随钻方位伽马能谱测井影响因素分析及校正研究

郑健, 高辉, 黄禄刚, 段军亚, 董夺

郑健, 高辉, 黄禄刚, 段军亚, 董夺. 随钻方位伽马能谱测井影响因素分析及校正研究[J]. 石油钻探技术, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131
引用本文: 郑健, 高辉, 黄禄刚, 段军亚, 董夺. 随钻方位伽马能谱测井影响因素分析及校正研究[J]. 石油钻探技术, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131
ZHENG Jian, GAO Hui, HUANG Lugang, DUAN Junya, DONG Duo. Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131
Citation: ZHENG Jian, GAO Hui, HUANG Lugang, DUAN Junya, DONG Duo. Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131

随钻方位伽马能谱测井影响因素分析及校正研究

基金项目: 中国科学院A类战略性先导科技专项“智能导钻技术装备体系与相关理论研究”之课题“随钻方位密度和伽马能谱测井技术”(编号:XDA14020600)资助
详细信息
    作者简介:

    郑健(1987—),男,山东潍坊人,2011年毕业于北京工业大学机械工程专业,2014年获北京工业大学机械工程专业硕士学位,工程师,主要从事随钻测井技术研究及仪器研发工作。E-mail: zhengjian@mail.iggcas.ac.cn

  • 中图分类号: P631.8+17

Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling

  • 摘要:

    在不同井眼环境和地层条件下,随钻方位伽马能谱响应会有一定差异,从而影响后续的测井解释及地质导向结果,因此,有必要研究井眼和地层因素对随钻方位伽马能谱的影响规律,以消除其带来的不利影响。对比分析了现有随钻方位伽马能谱测井仪器结构,选择了其中一种结构作为研究对象,建立了相应的MCNP计算模型;采用蒙特卡罗方法模拟了随钻方位伽马能谱测井在不同井眼、地层条件下的响应,得到了钻井液密度、钻井液中KCl含量、地层骨架,以及倾斜放射性地层的倾角、方位角、厚度对随钻方位伽马能谱测井的影响规律,在此基础上,给出了非地层因素影响的校正方法。研究结果表明:计数率与钻井液中KCl含量和地层倾角及厚度正相关,与钻井液密度、地层骨架密度和地层倾斜界面方位角负相关;KCl能改变能谱形状,其他因素不改变能谱形状。研究表明,利用井眼影响因素校正后的计数率或能谱计算的泥质含量及K,U和Th的含量更接近真实值,可为测井解释及地质导向提供更可靠的指导。

    Abstract:

    Under different borehole and formation conditions, there are some differences in the response of azimuthal gamma spectrum logging while drilling which can affect the subsequent logging interpretation and geosteering results. Therefore, it is necessary to study the influence of borehole and formation factors on the LWD azimuthal gamma spectrum, so as to eliminate the adverse effects and errors. First of all, the instrument structure of SAGR tool was compared and analyzed, and one of the structures was selected to be the study objective to establish the corresponding MCNP model. The response of LWD SAGR tool under different wellbore and formation conditions was simulated with the Monte Carlo method. The degree of influence for each of the following factors was obtained: mud density, KCl content, formation matrix and the dip angle, azimuth and thickness of inclined radioactive formation on the LWD SAGR Tool. Using the derived results it was possible to develop an appropriate, correction method for the influence of each of the non-stratigraphic factors. The results showed that the counting rate was positively correlated with KCl, dip angle and the formation thickness, and negatively correlated with mud density, the formation matrix density and azimuth. Only KCl rather than other factors can change the shape of energy spectrum. The study found that the counting rate after being corrected by the borehole influencing factors or the shale content, K, U, Th calculated by energy spectrum were closer to the true values, which could provide more accurate guidance for logging interpretation and geosteering.

  • 图  1   建立的MCNP计算模型

    Figure  1.   Established MCNP calculation model

    图  2   不同钻井液密度、井眼间隙下的计数率

    Figure  2.   Total count rate at different mud densities and wellbore gaps

    图  3   不同井眼间隙下的能谱

    Figure  3.   Energy spectrum at different wellbore gaps

    图  4   不同钻井液密度下的能谱

    Figure  4.   Energy spectrum at different mud densities

    图  5   不同KCl含量、井眼间隙下的计数率

    Figure  5.   Counting rate at different KCl contents and wellbore gaps

    图  6   不同KCl含量下的能谱

    Figure  6.   Energy spectrum at different KCl contents

    图  7   不同地层骨架下的计数率

    Figure  7.   Counting rate at different formation matrices

    图  8   不同地层骨架下的能谱

    Figure  8.   Energy spectrum at different formation matrices

    图  9   倾斜界面的MCNP计算模型

    Figure  9.   MCNP calculation model of inclined interface

    图  10   探测器穿过不同倾角界面时的计数率

    Figure  10.   Counting rate when the detector passes through interfaces with different dip angles

    图  11   原点处不同界面倾角下的计数率

    Figure  11.   Counting rate at different interface dips at the origin

    图  12   不同界面倾角下的能谱

    Figure  12.   Energy spectrum at different interface inclinations

    图  13   不同旋转角度下的计数率

    Figure  13.   Counting rate at different azimuths

    图  14   原点处不同旋转角度下的计数率

    Figure  14.   Counting rate at different rotating angles at the origin

    图  15   不同旋转角度下的能谱

    Figure  15.   Energy spectrum at different rotating angles

    图  16   倾斜地层厚度的MCNP计算模型

    Figure  16.   MCNP calculation model of inclined formation with a certain thickness

    图  17   倾斜地层不同厚度下的计数率

    Figure  17.   Counting rate at different inclined formation thicknesses

    图  18   原点处倾斜地层不同厚度下的计数率

    Figure  18.   Counting rate at different inclined formation thicknesses at the origin

    图  19   倾斜地层不同厚度下的能谱响应

    Figure  19.   Energy spectrum response at different inclined formation thicknesses

    图  20   KCl和钻井液密度校正图版

    Figure  20.   Correction chart of KCl and drilling fluid density

    图  21   校正前后泥质含量计算值对比

    Figure  21.   Comparison of the calculated values of muddy content before and after correction

    图  22   校正前后K含量计算值对比

    Figure  22.   Comparison of calculated potassium content before and after calibration

  • [1] 袁超.随钻方位伽马测井方法基础研究[D].青岛: 中国石油大学(华东), 2012.

    YUAN Chao. Fundamental study on LWD azimuthal gamma ray well logging[D]. Qingdao: China University of Petroleum (East China), 2012.

    [2] 邵才瑞,曹先军,陈国兴,等. 随钻伽马测井快速正演算法及地质导向应用[J]. 地球物理学报, 2013, 56(11): 3932–3942. doi: 10.6038/cjg20131135

    SHAO Cairui, CAO Xianjun, CHEN Guoxing, et al. A fast forward algorithm for LWD gamma-ray response and its geosteering application[J]. Chinese Journal of Geophysics, 2013, 56(11): 3932–3942. doi: 10.6038/cjg20131135

    [3] 向长生,王智锋,亢武臣. 随钻自然伽马地层边界模型分析[J]. 石油钻采工艺, 2013, 35(1): 112–114. doi: 10.3969/j.issn.1000-7393.2013.01.032

    XIANG Changsheng, WANG Zhifeng, KANG Wuchen. Modeling and analysis of formation boundaries based on LWD natural gamma[J]. Oil Drilling & Production Technology, 2013, 35(1): 112–114. doi: 10.3969/j.issn.1000-7393.2013.01.032

    [4] 范宇翔,骆庆锋,李留,等. 伽马成像随钻测井仪钻铤布局设计可靠性分析[J]. 石化技术, 2015, 22(10): 213–214. doi: 10.3969/j.issn.1006-0235.2015.10.156

    FAN Yuxiang, LUO Qingfeng, LI Liu, et al. Analysis on design reliability of drill collar of gamma imaging logging while drilling instrument[J]. Petrochemical Industry Technology, 2015, 22(10): 213–214. doi: 10.3969/j.issn.1006-0235.2015.10.156

    [5] 曲汉武, 吴文圣, 梁云祥, 等.随钻伽马成像的方位分辨率计算方法研究[A].北京: 2016中国地球科学联合学术年会, 2016-10.

    QU Hanwu, WU Wensheng, LIANG Yunxiang, et al. Research on azimuth resolution calculation method of gamma imaging while drilling[A]. Beijing: 2016 Annual Meeting of Chinese Geoscience Union, 2016-10.

    [6] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    [7]

    MICKAEL M, PHELPS D, JONES D. Design, calibration, characterization, and field experience of new high-temperature, azimuthal, and spectral gamma ray logging-while-drilling tools[R]. SPE 77481, 2002.

    [8]

    MICKAEL M W, JONES D A, PHELPS D A, et al. Spectral gamma ray logging-while-drilling system: US7253401B2[P]. 2007-08-07[2019-01-07].

    [9]

    NYE R, TOMMASO D D. Well optimization using a LWD spectral azimuthal gamma ray tool in unconventional reservoirs[R]. OMC-2013-137, 2013.

    [10]

    MARSALA A F, KASPRZYKOWSKI P, KIMOUR F. Spectral gamma ray complements innovative real time advanced mud logging characterization while drilling[R]. SPE 168099, 2013.

    [11]

    MARANUK C, MICKAEL M, ZIMMERMANN P. Applications of a unique spectral azimuthal gamma ray tool to unconventional reservoirs[R]. SPWLA-2013-II, 2013.

    [12]

    DIAB M, COMBS J. Unconventional horizontal well placement challenges: LWD geosteering applications utilizing a unique spectral azimuthal gamma ray in real time[R]. SPE 169499, 2014.

    [13]

    XU Libai, HUISZOON C, WANG Jiaxin, et al. Spectral gamma-ray measurement while drilling[R]. SPWLA-2016-V57N4A4, 2016.

  • 期刊类型引用(7)

    1. 王磊,胡松,齐真真. 水平井缝洞储层双侧向测井响应数值模拟分析. 非常规油气. 2024(05): 20-27 . 百度学术
    2. 李丰丰,蔡文渊,倪小威,徐思慧,刘春,刘迪仁. 过井眼洞穴型地层钻头电阻率测井响应特征分析. 石油物探. 2023(05): 990-998 . 百度学术
    3. 赖强,唐军,吴煜宇,许巍,谢冰,金燕. 大斜度井双侧向测井响应数值模拟及电阻率各向异性校正方法. 石油地球物理勘探. 2022(03): 706-712+496-497 . 百度学术
    4. 潘卫国,吴丰,孟凡. 碳酸盐岩溶孔溶洞型储层双侧向测井响应数值模拟. 科学技术与工程. 2022(23): 10022-10033 . 百度学术
    5. 王永涛,王书纯,邵春. 基于NB-IoT的双侧向测井仪远程监测系统设计. 电子设计工程. 2022(19): 1-5 . 百度学术
    6. 王永涛,王书纯,朱珺,邵春. 用于双侧向测井仪的信号滤波电路设计. 电子设计工程. 2022(20): 1-5 . 百度学术
    7. 刘晶晶,毛毳,魏荷花,权莲顺,刘泽璇. 塔河油田奥陶系缝洞充填序列及其测井响应. 新疆石油地质. 2021(01): 46-52 . 百度学术

    其他类型引用(2)

图(22)
计量
  • 文章访问数:  1362
  • HTML全文浏览量:  454
  • PDF下载量:  93
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-10-14
  • 网络出版日期:  2019-12-27
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回