Testing and Evaluation of Reinforced Reservoir Stimulations Using Composite Electrothermal-Chemical Shock Waves
-
摘要:
为了完善复合电热化学聚能冲击波技术的工艺参数优化及效果评价,首先进行了大尺寸混凝土岩样的复合电热化学聚能冲击试验,评价了该技术的冲击破岩效果和控制因素;然后建立了可实现强动载重复冲击的数值模型,进行了大尺寸岩样模拟试验;最后利用数值模型系统评价了冲击次数、峰值压力、岩石弹性模量和地应力对措施效果的敏感性,分析了各工艺参数对岩石裂缝数量及作用距离的影响规律,并预测了措施后的增产效果。试验结果表明:复合电热化学聚能冲击波技术可将常规电脉冲的脉冲宽度扩展约1.5倍,冲击峰值压力提高约3.0倍;岩样冲击6次后,产生4条宏观裂缝,模拟井眼周围产生不同程度的破碎。该研究结果为利用复合电热化学聚能冲击波技术的工程应用提供了理论指导。
Abstract:In order to optimize the process parameters and evaluate the effect of composite the electrothermal -chemical shock wave technique, testing with massive concrete samples was carried out. The first stage involved determining its rock breaking capacity and then the technique’s physical and theoretical constraints. Next, a numerical simulation model under strong dynamic loading was established to simulate the test. Finally, the sensitivity of impact frequency, peak value, elastic modulus of rock and the in-situ stress were evaluated using a numerical model to determine the effect of stimulation. Thus, the influence law of each process parameter on the number of fractures and active distance were analyzed, and the effectiveness of the stimulation was predicted. The experimental results demonstrated that the composite electrothermal-chemical shock wave technique could extend the pulse width of conventional electric pulse by roughly 1.5 times and increase the shock amplitude by around 3.0 times. In addition, four macroscopic fractures were generated in the rock sample after 6 shocks. The effect of composite electrothermal-chemical shock wave technique was evaluated and would provides theoretical guidance for the improvement of reinforced reservoir stimulation using this technique.
-
Keywords:
- electrothermal chemical /
- shock wave /
- impact test /
- numerical simulation /
- sensitivity /
- stimulation effect
-
-
表 1 混凝土岩样和储层岩石的物性参数
Table 1 Physical parameters of concrete samples and reservoir rocks
类别 抗压强度/MPa 塑性系数 抗拉强度/MPa 弹性模量/GPa 泊松比 黏聚力/MPa 摩擦系数 混凝土 48.1 0.98 3.1 36.0 0.22 9.53 0.77 储层岩石 46.0~49.0 0.95~0.99 3.0~4.0 35.0~38.0 0.20~0.25 9.30~9.60 0.75~0.80 表 2 岩样冲击试验结果
Table 2 Rock sample impact test results
序号 聚能棒编号 弹药量/g 触发电压/kV 试验结果 1 7# 10.0 23.36 表面无裂缝,应变仪显示有裂缝产生 2 7# 10.0 23.12 表面无裂缝,应变仪显示有裂缝产生 3 7# 10.0 22.75 产生2条裂缝 4 7# 10.0 23.46 又产生2条新裂缝 5 7# 10.0 23.21 裂缝长度延伸 6 7# 10.0 23.10 裂缝缝宽变大,且长度继续延伸 表 3 不同冲击次数下的模拟结果
Table 3 Simulation results after different impacts
冲击次数/次 破碎区长度/m 裂隙数量/条 裂隙区长度/m 1 0.10 0 0 2 0.15 0 0 4 0.18 2 1.15 6 0.21 4 1.62 9 0.25 4 1.70 12 0.34 4 1.71 表 4 不同地应力下冲击后的模拟结果
Table 4 Simulation results after impact under different geostress
地应力/MPa 破碎区长度/m 裂隙条数/条 裂隙区长度/m 10 0.12 5 1.84 20 0.18 4 1.62 30 0.21 4 1.42 -
[1] 刘长松,杜永慧,李晓东,等. 低渗多敏感性油藏酸化增注配方的研制[J]. 断块油气田, 2019, 26(1): 111–114. LIU Changsong, DU Yonghui, LI Xiaodong, et al. Development of acidification and annotation formula for low permeability and multisensitivity reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 111–114.
[2] 王兆泉. 低渗透油田开发特征与技术研究[J]. 石化技术, 2018, 25(8): 141. doi: 10.3969/j.issn.1006-0235.2018.08.108 WANG Zhaoquan. Research on characteristics and technology of low permeability oilfield development[J]. Petrochemical Industry Technology, 2018, 25(8): 141. doi: 10.3969/j.issn.1006-0235.2018.08.108
[3] 孙元伟,程远方,张卫防,等. 致密储层应力敏感性分析及裂缝参数优化[J]. 断块油气田, 2018, 25(4): 493–497. SUN Yuanwei, CHENG Yuanfang, ZHANG Weifang, et al. Analysis of stress sensitivity and optimization of fracturing parameter for tight reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 493–497.
[4] 周越. 液中放电的研究与应用[J]. 电工电能新技术, 1988(3): 20–27. ZHOU Yue. Investigation and applicaticn of the electrical discharge in water[J]. Advanced Technology of Electrical Engineering and Energy, 1988(3): 20–27.
[5] CLENMENTS J S, SATO M, DAVIS R H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water[J]. IEEE Transaction on Industry Applications, 1987, IA-23(2): 224–235. doi: 10.1109/TIA.1987.4504897
[6] ZIAUL H, MUHAMMAD R A, RAGHAVA R K. Application of pulse detonation technology for boiler slag removal[J]. Fuel Processing Technology, 2009, 90(4): 558–569. doi: 10.1016/j.fuproc.2009.01.004
[7] 孙凤举,曾正中,邱毓昌,等. 一种用于油水井解堵的脉冲大电流源[J]. 高电压技术, 1999, 25(2): 47–49. doi: 10.3969/j.issn.1003-6520.1999.02.017 SUN Fengju, ZENG Zhengzhong, QIU Yuchang, et al. Pulse high current power supply used for dredging oil & water wells[J]. High Voltage Engineering, 1999, 25(2): 47–49. doi: 10.3969/j.issn.1003-6520.1999.02.017
[8] 孙鹞鸿,孙广生,严萍,等. 高压电脉冲采油技术发展[J]. 高电压技术, 2002, 28(1): 41–42, 44. doi: 10.3969/j.issn.1003-6520.2002.01.020 SUN Yaohong, SUN Guangsheng, YAN Ping, et al. The development of the electric pulse oil-mining technology[J]. High Voltage Engineering, 2002, 28(1): 41–42, 44. doi: 10.3969/j.issn.1003-6520.2002.01.020
[9] BUNTZEN R R. The use of exploding wires in the study of small-scale underwater explosions// Exploding Wires[C]. 5th ed. New York: Plenum Press, 1962: 195-205.
[10] TOBE T, KATO M, OBARA H. Metal forming by underwater wire explosions: 2 experiments on bulging of circular aluminum sheets by copper wire explosions[J]. Bulletin of JSME, 1984, 27(23): 130–135.
[11] HESS G R. Plasma driven water shock[R]. Albuquerque: Mission Research Corp, 1996.
[12] GRINENKO A, GUROVICH V T, SAYPIN A, et al. Strongly coupled copper plasma generated by underwater electrical wire explosion[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(6): 156–162.
[13] 张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4): 1009–1017. ZHANG Yongmin, QIU Aici, ZHOU Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009–1017.
[14] 周海滨,韩若愚,吴佳玮,等. 水中铜丝电爆炸放电通道模型及仿真[J]. 高电压技术, 2015, 41(9): 2943–2949. ZHOU Haibin, HAN Ruoyu, WU Jiawei, et al. Model and simulation study of discharge channel during underwater Cu wire explosion[J]. High Voltage Engineering, 2015, 41(9): 2943–2949.
[15] 周海滨,张永民,刘巧珏,等. 铜丝电爆炸等离子体对含能材料的驱动特性[J]. 高电压技术, 2017, 43(12): 4026–4031. ZHOU Haibin, ZHANG Yongmin, LIU Qiaojue, et al. Ignition performance of Cu-wire electrical explosion plasma on energetic materials[J]. High Voltage Engineering, 2017, 43(12): 4026–4031.
[16] 张永民,邱爱慈,秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9): 79–85. ZHANG Yongmin, QIU Aici, QIN Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79–85.
[17] 翟文宝,李军,周英操,等. 突变理论在页岩储层可压性评价中的应用[J]. 断块油气田, 2018, 25(1): 76–79. ZHAI Wenbao, LI Jun, ZHOU Yingcao, et al. Application of catastrophe theory to fracability evaluation of shale reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 76–79.
[18] 唐述凯,李明忠,綦民辉,等. 重复压裂前诱导应力影响新裂缝转向规律[J]. 断块油气田, 2017, 24(4): 557–560. TANG Shukai, LI Mingzhong, QI Minhui, et al. Study of fracture reorientation caused by induced stress before re-fracturing[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 557–560.
[19] 何易东,任岚,赵金洲,等. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 2017, 24(4): 550–556. HE Yidong, REN Lan, ZHAO Jinzhou, et al. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 550–556.
[20] 许赛男,崔云江,陆云龙,等. 利用岩石弹性模量定量评价潜山储层产能的方法[J]. 断块油气田, 2017, 24(5): 674–677. XU Sainan, CUI Yunjiang, LU Yunlong, et al. New quantitative calculation method for buried-hill reservoir productivity by rock mechanical parameters[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 674–677.
[21] 刘静,蒲春生,张鹏,等. 燃爆诱导压裂油井产能计算模型[J]. 应用化工, 2012, 41(11): 2016–2018. LIU Jing, PU Chunsheng, ZHANG Peng, et al. Productivity calculation model of exploding induced fracturing wells[J]. Applied Chemicals Industry, 2012, 41(11): 2016–2018.
-
期刊类型引用(21)
1. 黄亮,张永峰,张杰,鲁刚,吴春洪,蔡小东. 超深碳酸盐岩裸眼分段完井可溶球研究与应用. 石油机械. 2024(06): 58-63 . 百度学术
2. 王维,严锐锋,魏克颖,吴红钦,屈文涛. 可溶性球座Fe-Mn合金力学及腐蚀性能研究. 石油钻探技术. 2022(06): 133-138 . 本站查看
3. 钟林,冯桂弘,朱和明,王国荣,陈文斌. 压裂球座结构优化分析及耐冲蚀研究. 表面技术. 2021(06): 213-219+228 . 百度学术
4. 兰乘宇,刘巨保,杨明,岳欠杯,刘玉喜,王勇. 隼槽式全通径不动管柱多级压裂技术及其应用. 中国石油大学学报(自然科学版). 2021(03): 88-96 . 百度学术
5. 董小卫,田志华,舒博钊,南荣丽,韩光耀,刘亚明,赵文龙. 水平井不动管柱无限级分段重复压裂技术研究. 石油矿场机械. 2019(01): 60-63 . 百度学术
6. 杨海波,赵传伟,李毅. 投球式全通径压裂滑套研制. 钻采工艺. 2019(02): 79-82+6 . 百度学术
7. 刘恩洋,于思荣,纪志康,牛亚峰,熊伟,曹宁. 漂珠/镁合金复合材料可溶压裂球的制备及组织性能研究. 稀有金属. 2019(08): 792-799 . 百度学术
8. 纪志康,于思荣,刘丽,姜倩,刘迪. Al含量对漂珠/镁合金可溶复合材料组织与性能的影响. 复合材料学报. 2018(05): 1211-1218 . 百度学术
9. 赵传伟,王绍先,裴学良,吴仲华,聂云飞,周洪国,孙浩玉,姜雪. 计数式全通径压裂滑套优化设计. 石油学报. 2018(04): 482-490 . 百度学术
10. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
11. 胡顺渠,戚斌,侯治民,刘涛. 全通径无级滑套研制及应用. 钻采工艺. 2018(04): 73-76+10 . 百度学术
12. 冯凌志. 浅析油田井下压裂施工关键技术及相关问题. 化学工程与装备. 2018(09): 177-178 . 百度学术
13. 平恩顺,王林,陶卫东,王晓磊,李博,冯国君,王瑞泓. 分段压裂可降解涂层球座密封设计. 润滑与密封. 2018(12): 88-91+96 . 百度学术
14. 赵传伟,李云,李国锋,董恩博,孙浩玉. 基于Taguchi方法的计数式全通径压裂滑套优化设计. 石油钻探技术. 2017(01): 97-103 . 本站查看
15. 杨德锴. 全通径滑套球座打捞机构关键技术研究. 石油钻探技术. 2017(04): 75-80 . 本站查看
16. 李斌,郑旭,张作鹏,张珍珍. 裸眼分段压裂投球滑套的密封性研究. 应用力学学报. 2017(06): 1134-1139+1223 . 百度学术
17. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 . 百度学术
18. 赵传伟,唐明,李伟,肖经纬,马德材,孙浩玉. 基于遗传算法的计数式全通径压裂滑套优化设计. 石油钻采工艺. 2016(05): 693-699 . 百度学术
19. 魏辽,马兰荣,朱敏涛,吴晋霞,朱玉杰,韩峰. 大通径桥塞压裂用可溶解球研制及性能评价. 石油钻探技术. 2016(01): 90-94 . 本站查看
20. 秦金立,陈作,杨同玉,戴文潮,吴春方. 鄂尔多斯盆地水平井多级滑套分段压裂技术. 石油钻探技术. 2015(01): 7-12 . 本站查看
21. 杨焕强,王瑞和,周卫东,李罗鹏,桂捷. 固井滑套端口参数对压裂影响的试验研究及模拟分析. 石油钻探技术. 2015(02): 54-58 . 本站查看
其他类型引用(10)