古城油田B125区块稠油油藏超高分子量聚合物驱技术

陶光辉, 束华东, 刘斌

陶光辉, 束华东, 刘斌. 古城油田B125区块稠油油藏超高分子量聚合物驱技术[J]. 石油钻探技术, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
引用本文: 陶光辉, 束华东, 刘斌. 古城油田B125区块稠油油藏超高分子量聚合物驱技术[J]. 石油钻探技术, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
Citation: TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127

古城油田B125区块稠油油藏超高分子量聚合物驱技术

基金项目: 中国石化“十条龙”科技攻关项目“三次采油耐温聚合物工业应用试验”资助
详细信息
    作者简介:

    陶光辉(1963—),男,河南滑县人,1981年毕业于重庆石油学校石油工程专业,高级工程师,主要从事油田开发管理工作。E-mail:taogh_hn@163.com

  • 中图分类号: TE357.46+1

Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield

  • 摘要:

    古城油田B125区块普通稠油油藏储层非均质性严重,原油平均黏度达1 000 mPa·s以上,进一步提高采收率难度大。为此,通过增黏性、流变性和驱油试验,评价了超高分子量聚合物提高普通稠油采收率的技术优势,考察了含硫污水对聚合物溶液性能的影响。试验表明,超高分子量聚合物增黏性优越,相同质量浓度下较常规聚合物溶液黏度高40%以上;黏弹性强,相同黏度下较常规聚合物采收率提高3.4百分点以上;含硫污水会造成聚合物溶液黏度降低10%以上、弹性明显减弱和采收率提高幅度降低3.0百分点。B125区块部署注聚井22口,截至2018年底,累计注入0.22倍孔隙体积的聚合物溶液,注入压力上升3.5 MPa,日产油量增加45.0 t,含水率降低9.0百分点,累计增产油量1.84×104 t,阶段采收率提高1.19百分点。研究与应用表明,超高分子量聚合物驱技术可以大幅提高较高黏度普通稠油油藏的采收率。

    Abstract:

    Common heavy oil reservoir in Block B125 of the Gucheng Oilfield shows strong heterogeneity, and the average crude oil viscosity is above 1 000 mPa·s, which makes it more difficult to further improve oil recovery rate. Technical advantages of ultra-high molecular weight polymer in enhancing the recovery factor of common heavy oil were evaluated through viscosity, rheology and oil displacement tests. The effect of sulfur-containing sewage on the performance of polymer solution was investigated. The tests show that ultra-high molecular weight polymer has a superior viscosity increasing property, and the viscosity is more than 40% higher than that of conventional polymers at the same mass concentration, and its recovery factor is 3.4 percentage points higher than that of the conventional polymers with the same viscosity. Sulphur-containing sewage will reduce the viscosity of polymer solution over 10%, the recovery factor can be decreased by 3.0 percentage points, and elasticity will be significantly weakened. A total of 22 polymer injection wells were deployed in Block B125. By the end of 2018, a total of 0.22 PV of polymer solution was injected, and the injection pressure increased 3.5 MPa. The daily oil production rate increment was 45.0 tons and the cumulative oil production increment reached 1.84×104 t, while water cut was decreased by 9.0 percentage points and EOR was increased by 1.19 percentage points in this stage. The research demonstrates that the ultra-high molecular weight polymer flooding technology can bring a largely increased EOR of high viscosity common heavy oil reservoirs, and it can provide a new technical route and on-site basis for enhancing oil recovery in this type of reservoirs.

  • 图  1   原油和驱替相流度比与提高采收率的关系

    Figure  1.   Relationship between fluidity ratio and EOR

    图  2   聚合物溶液黏度–质量浓度关系

    Figure  2.   The relationship between polymer solution viscosity-mass concentration

    图  3   不同聚合物溶液的第一法向应力差

    Figure  3.   First normal stress difference of polymer solution

    图  4   不同聚合物溶液的储能模量

    Figure  4.   Storage modulus of polymer solution

    图  5   不同水配制的聚合物溶液的黏度–质量浓度关系曲线

    Figure  5.   Viscosity-mass concentration relationship of polymer solution under different water-configured conditions

    图  6   不同水配制的聚合物溶液的第一法向应力差

    Figure  6.   First normal stress difference of polymer solution under different water-confected conditions

    图  7   B125区块超高分子量聚合物驱生产曲线

    Figure  7.   Ultra-high molecular weight polymer flooding production curves in Block B125

    表  1   聚合物的基本性能参数

    Table  1   Basic performance parameters of polymer products

    聚合物类型固相含量,%相对分子质量/104水解度,%溶解时间/min不溶物含量,%过滤因子
    CG–Ⅱ超高分子量89.033 37029.5≤1200.011.12
    P–Ⅰ常规90.402 20024.6≤1200.101.10
    Z–Ⅰ常规90.822 06724.5≤1200.121.06
    下载: 导出CSV

    表  2   岩心驱油试验结果

    Table  2   Results of a core flooding test

    聚合物配制水质量浓度/(mg·L–1黏度/(mPa·s)注入量/倍孔隙体积水驱采收率,%最终采收率,%采收率提高幅度,百分点
    CG–Ⅱ除硫污水2 000135.00.541.6652.8011.14
    CG–Ⅱ除硫污水2 200167.00.541.3956.8315.44
    CG–Ⅱ除硫污水2 500213.00.540.0056.6716.67
    CG–Ⅱ除硫污水2 000135.00.641.5959.2917.70
    CG–Ⅱ除硫污水2 500213.00.637.7858.8921.11
    P–I除硫污水2 200 94.00.636.6145.81 9.20
    P–I除硫污水3 000169.00.635.6147.6812.07
    CG–Ⅱ含硫污水2 200118.20.541.2554.2012.95
    CG–Ⅱ含硫污水2 500130.40.539.7253.4513.73
    下载: 导出CSV
  • [1] 丁保东,张贵才,葛际江,等. 普通稠油化学驱的研究进展[J]. 西安石油大学学报(自然科学版), 2011, 26(3): 52–58.

    DING Baodong, ZHANG Guicai, GE Jijiang, et al. Research progress in the chemical flooding of conventional heavy oil[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2011, 26(3): 52–58.

    [2] 裴海华,张贵才,葛际江,等. 化学驱提高普通稠油采收率的研究进展[J]. 油田化学, 2010, 27(3): 350–356.

    PEI Haihua, ZHANG Guicai, GE Jijiang, et al. Advance in enhanced ordinary heavy oil recovery by chemical flooding[J]. Oilfield Chemistry, 2010, 27(3): 350–356.

    [3] 蒋平,葛际江,张贵才,等. 稠油油藏化学驱采收率的影响因素[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 166–171.

    JIANG Ping, GE Jijiang, ZHANG Guicai, et al. Influence factor on oil recovery efficiency for chemical flooding of heavy oil reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 166–171.

    [4] 周远彬,卢建平,李勇强,等. 胜坨油田普通稠油油藏聚合物驱试验效果评价[J]. 河南石油, 2004, 18(2): 29–31.

    ZHOU Yuanbin, LU Jianping, LI Yongqiang, et al. Evaluation of polymer flooding pilot in ordinary heavy oil reservoirs in Shengtuo Oilfield[J]. Henan Petroleum, 2004, 18(2): 29–31.

    [5] 石静,曹绪龙,王红艳,等. 胜利油田高温高盐稠油油藏复合驱技术[J]. 特种油气藏, 2018, 25(4): 129–133.

    SHI Jing, CAO Xulong, WANG Hongyan, et al. Combination flooding technology used in high-temperature, high-salinity heavy oil reservoirs of Shengli Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 129–133.

    [6] 刘东,胡廷惠,潘广明,等. 稠油油藏弱凝胶调驱增油预测模型研究[J]. 特种油气藏, 2018, 25(4): 103–108.

    LIU Dong, HU Tinghui, PAN Guangming, et al. Forecasting model for profile control and eor in heavy oil reservoirs by using weak gel[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 103–108.

    [7] 刘义坤,王福林,隋新光. 高浓度聚合物驱提高采收率方法理论研究[J]. 石油钻采工艺, 2008, 30(6): 67–70.

    LIU Yikun, WANG Fulin, SUI Xinguang. Theory research on EOR method of high concentration polymer flooding[J]. Oil Drilling & Production Technology, 2008, 30(6): 67–70.

    [8] 王德民,程杰成,杨清彦. 粘弹性聚合物溶液能够提高岩心的微观驱油效率[J]. 石油学报, 2000, 21(5): 45–51. doi: 10.3321/j.issn:0253-2697.2000.05.010

    WANG Demin, CHENG Jiecheng, YANG Qingyan. Viscous-elastic polymer can increase micro-scale displacement efficiency in cores[J]. Acta Petrolei Sinica, 2000, 21(5): 45–51. doi: 10.3321/j.issn:0253-2697.2000.05.010

    [9] 夏惠芬,孔凡顺,吴军政,等. 聚合物溶液的粘弹效应对驱油效率的作用[J]. 大庆石油学院学报, 2004, 28(6): 29–31.

    XIA Huifen, KONG Fanshun, WU Junzheng, et al. The effect of elastic behavior of HPAM solution on displacement efficiency[J]. Journal of Daqing Petroleum Institute, 2004, 28(6): 29–31.

    [10] 徐辉,孙秀芝,韩玉贵,等. 超高分子量聚合物性能评价及微观结构研究[J]. 石油钻探技术, 2013, 41(3): 114–118. doi: 10.3969/j.issn.1001-0890.2013.03.022

    XU Hui, SUN Xiuzhi, HAN Yugui, et al. Performance evaluation and microstructure study of ultra high molecular weight polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114–118. doi: 10.3969/j.issn.1001-0890.2013.03.022

    [11] 徐辉. 超高分子缔合聚合物溶液特性及驱油效果研究[J]. 石油钻探技术, 2015, 43(2): 78–83.

    XU Hui. Solution characteristics and oil displacement efficiency of an ultrahigh molecular weight association polymer[J]. Petroleum Drilling Techniques, 2015, 43(2): 78–83.

    [12] 袁敏,贾忠伟,袁纯玉. 聚合物溶液粘弹性影响因素研究[J]. 大庆石油地质与开发, 2005, 24(5): 74–76. doi: 10.3969/j.issn.1000-3754.2005.05.026

    YUAN Min, JIA Zhongwei, YUAN Chunyu. Research on influential factors to viscoelasticity of polymer solution[J]. Petroleum Geology & Oilfield Development in Daqing, 2005, 24(5): 74–76. doi: 10.3969/j.issn.1000-3754.2005.05.026

    [13] 宋考平,杨二龙,王锦梅,等. 聚合物驱提高驱油效率机理及驱油效果分析[J]. 石油学报, 2004, 25(3): 71–74. doi: 10.3321/j.issn:0253-2697.2004.03.014

    SONG Kaoping, YANG Erlong, WANG Jinmei, et al. Mechanism of enhancing oil displacement efficiency by polymer flooding and driving effectiveness analysis[J]. Acta Petrolei Sinica, 2004, 25(3): 71–74. doi: 10.3321/j.issn:0253-2697.2004.03.014

    [14] 王雨,宋考平,唐放. 预测聚合物驱油田产量的两种方法的对比[J]. 石油钻探技术, 2009, 37(2): 70–73.

    WANG Yu, SONG Kaoping, TANG Fang. The comparison between two methods of predicting oil production in polymer-flooding oilfields[J]. Petroleum Drilling Techniques, 2009, 37(2): 70–73.

    [15] 刘洪兵,周正祥,廖广志. 高相对分子质量聚合物驱油效果影响因素分析[J]. 大庆石油地质与开发, 2002, 21(6): 48–50. doi: 10.3969/j.issn.1000-3754.2002.06.017

    LIU Hongbing, ZHOU Zhengxiang, LIAO Guangzhi. Affecting factors of displacement effects of high molecular weight polymer[J]. Petroleum Geology & Oilfield Development in Daqing, 2002, 21(6): 48–50. doi: 10.3969/j.issn.1000-3754.2002.06.017

    [16] 王旭东,张健,康晓东,等. 稠油油藏水平井聚合物驱注入能力影响因素[J]. 断块油气田, 2017, 24(1): 87–90.

    WANG Xudong, ZHANG Jian, KANG Xiaodong, et al. Influence factors on horizontal well injectivity of polymer flooding in heavy oil reservoir[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 87–90.

  • 期刊类型引用(3)

    1. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    2. 李硕轩,赵东睿,高红茜,刘誉. 超高分子聚合物驱提高高盐稠油油藏采收率机理及现场应用. 钻采工艺. 2023(01): 132-139 . 百度学术
    3. 白佳佳,顾添帅,司双虎,陶磊,张娜,史文洋,朱庆杰. 高盐稠油油藏聚合物驱提高采收率研究. 常州大学学报(自然科学版). 2023(05): 60-66 . 百度学术

    其他类型引用(3)

图(7)  /  表(2)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  509
  • PDF下载量:  51
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-10-14
  • 网络出版日期:  2019-11-11
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回