Loading [MathJax]/jax/output/SVG/jax.js

苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识

唐人选, 梁珀, 吴公益, 陈菊, 梁翠

唐人选, 梁珀, 吴公益, 陈菊, 梁翠. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术, 2020, 48(1): 98-103. DOI: 10.11911/syztjs.2019125
引用本文: 唐人选, 梁珀, 吴公益, 陈菊, 梁翠. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术, 2020, 48(1): 98-103. DOI: 10.11911/syztjs.2019125
TANG Renxuan, LIANG Po, WU Gongyi, CHEN Ju, LIANG Cui. Analyzing and Understanding the Influencing Factors of CO2 Flooding in the Subei Complex Fault Block Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98-103. DOI: 10.11911/syztjs.2019125
Citation: TANG Renxuan, LIANG Po, WU Gongyi, CHEN Ju, LIANG Cui. Analyzing and Understanding the Influencing Factors of CO2 Flooding in the Subei Complex Fault Block Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98-103. DOI: 10.11911/syztjs.2019125

苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识

详细信息
    作者简介:

    唐人选(1966—),男,江苏泰州人,1988年毕业于南京大学地质系找矿专业,2000年获石油大学(华东)油气田开发工程专业硕士学位,高级工程师,主要从事油气田开发方面的研究工作。E-mail:1203445006@qq.com

  • 中图分类号: TE341

Analyzing and Understanding the Influencing Factors of CO2 Flooding in the Subei Complex Fault Block Reservoirs

  • 摘要:

    苏北盆地复杂断块油藏CO2驱油效果差异较大,为制定提高CO2驱油效果的有效措施,分析了其主要影响因素。对苏北9个CO2驱区块的相关数据进行了统计,分析了井型、压裂情况、注气前油井产油量、注采比和注气方式等对CO2驱油效果的影响。分析结果为:直井的开发效果好于水平井,非压裂井的效果好于压裂井,油井初产量越高则CO2驱油效果越好,最佳注采比为2.5左右,而注CO2方式对开发效果影响不大。研究结果表明,低渗透油藏采用的井型、油井是否压裂、注气前油井产油量是影响CO2驱油效果的主要因素,在研究制定提高苏北盆地复杂断块油藏CO2驱油效果的技术措施时,应充分考虑这些主要影响因素。

    Abstract:

    The performance of CO2 flooding in the complex fault block reservoirs of the Subei Basin varies greatly. In order to find effective measures to improve the development of these unique fault-block reservoirs, the main influencing factors were analyzed. Based on the data from 9 CO2 flooding blocks in north Jiangsu, the influences of well type, fracturing conditions, initial production before gas injection, the injection-production ratio and the gas injection method on CO2 flooding effects were analyzed. The analysis results show that the development effect of vertical wells is better than that of horizontal wells, and it is better for non-fractured wells than fractured. The higher the initial production of the well, the better the CO2 flooding effect. The optimal injection-production ratio is around 2.5, while CO2 injection methods play an insignificant role in the development effect. The results show that those factors, such as low permeability reservoir well type and the necessity of reservoir stimulation, are the main factors influencing CO2 flooding. Those issues need to be fully considered in improving the CO2 flooding effect in the complex fault block reservoirs in the Subei Basin.

  • 塔里木盆地库车坳陷凝析油气资源丰富,主要有博孜、大北、迪那以及吐孜洛克等凝析气田,其中大北凝析气田原油含蜡量差异较大,含蜡量最高为22%,最低仅为3%[1]。随着温度降低,含蜡地层流体中的蜡分子析出并沉积在井筒内壁,堵塞流动通道,使流通直径减小,导致凝析气井产量降低或停产[26]。因此,亟待进一步明确含蜡量对凝析气藏相态特征的影响规律。目前国内外对凝析气藏相态特征的研究大多集中在析蜡点、蜡沉积、含蜡高低成因、清蜡防蜡方法以及结蜡预测模型等方面[710]。例如,杨永才等人[1112]分析了高含蜡凝析油或轻质油的分布特征,揭示了含蜡凝析气藏的形成机理;胡永乐等人[13]利用高压相态试验装置研究了高含蜡凝析气的相态特征,发现在不同压力条件下高含蜡凝析气表现出的颜色随相态变化而变化;钟太贤等人[1417]研究了含蜡凝析气藏的相图变化,从试验和理论的角度分析了析蜡机理。余华杰等人[18]分析了高含CO2凝析气的相态特征,发现CO2有助于抑制凝析油的反凝析作用和增强凝析油的反蒸发。由于含蜡量不同凝析气藏的相态特征不同,导致井筒中的结蜡量也不同,然而目前尚无含蜡量对凝析气藏相态特征影响的相关研究。为此,笔者利用大北凝析气田1101井的油气样品,建立了不同含蜡量地层流体样品的制作方法,研究了大北地区凝析气田不同含蜡量地层流体的组分及其含量、露点压力、偏差系数和反凝析液饱和度等相态特征,以期为制定凝析气藏合理的开发方式和提高凝析油的采收率提供指导[19]

    笔者用大北凝析气田1101井地面凝析油与分离器分离的气体,按生产气油比复配获得地层流体,取样时分离器温度为44 ℃,压力为14.787 MPa,现场生产气油比为25 421.62 m3/m3。地面凝析油与分离气组分的分析结果见表1表2。由表1可知,凝析油中C11以上组分占74.048 9%。由表2可知,分离气中甲烷占94.568 4%。

    表  1  凝析油的组分及含量
    Table  1.  Components and content of condensate oil
    组分 摩尔分数,% 组分 摩尔分数,% 组分 摩尔分数,%
    C2 0.0003 C12 8.2540 C24 1.7147
    C3 0.0016 C13 6.7210 C25 1.5276
    iC4 0.0056 C14 8.5290 C26 1.1862
    nC4 0.0144 C15 6.2654 C27 1.1130
    iC5 0.0669 C16 5.6442 C28 0.8046
    nC5 0.0704 C17 4.8326 C29 0.6320
    C6 0.6271 C18 4.3167 C30 0.4659
    C7 3.9753 C19 3.9792 C31 0.3154
    C8 7.2326 C20 3.2100 C32 0.4599
    C9 7.2648 C21 2.6767 C33 0.2379
    C10 6.6918 C22 2.3024 C34 0.2357
    C11 6.5018 C23 2.1230
    下载: 导出CSV 
    | 显示表格
    表  2  分离气的组分及含量
    Table  2.  Components and content for separator gas
    组分 摩尔分数,% 组分 摩尔分数,%
    CO2 0.2207 iC4 0.1266
    N2 0.6197 nC4 0.1549
    C1 94.5684 iC5 0.0689
    C2 3.5162 nC5 0.0539
    C3 0.6375 C6 0.0331
    下载: 导出CSV 
    | 显示表格

    为了研究含蜡量对凝析气藏地层流体相态特征的影响,需要保证在不改变生产气油比的条件下使凝析油中的含蜡量减少或增加,对于在分离器处取得的凝析油样品,其方法是通过加入该井本身的轻质油或高含蜡凝析油来减少或增加配样凝析油的含蜡量。

    通过蒸馏去除凝析油中的轻质油,获得高含蜡凝析油。将高蜡凝析油与分离器处取得的凝析油按照一定比例混合,参照标准《原油中蜡、胶质、沥青质含量的测定》(SY/T 7550—2012)[20],测试混合凝析油的含蜡量,制备了含蜡量分别为7.04%,12.08%,17.79%和27.77%的凝析油样品。根据现场生产气油比,参照标准《油气藏流体物性分析方法》(GB/T 26981—2020)[21],将不同含蜡量的凝析油样品与分离气样品进行复配,获得不同含蜡量的地层流体样品。

    通过地层流体的相态试验分析含蜡量对地层流体相态特征的影响。参照标准《油气藏流体物性分析方法》(GB/T 26981—2020)[21]进行地层流体相态试验,相态试验主要包括闪蒸试验、恒质膨胀试验和定容衰竭试验。

    利用闪蒸分离器和气相色谱仪进行不同含蜡量地层流体样品的单次闪蒸试验,闪蒸气、闪蒸油以及地层流体的组分分析结果见表3表5

    表  3  不同含蜡量凝析气藏地层流体闪蒸气组分分析结果
    Table  3.  Components and content of fluid flashed gas with different wax contents in condensate gas reservoirs
    含蜡量,%不同组分的摩尔分数,%
    CO2N2C1C2C3iC4nC4iC5nC5C6
    7.040.23140.666494.40763.58320.65030.133 00.16360.07410.05590.0345
    12.080.22270.675 094.33943.65530.65910.12970.15730.06780.05170.0421
    17.790.20960.540794.91953.32630.60040.11880.14430.06280.04790.0298
    27.770.22070.652294.47073.58280.64280.12650.15340.06610.05050.0342
    下载: 导出CSV 
    | 显示表格
    表  5  不同含蜡量下凝析气藏地层流体组分分析结果
    Table  5.  Composition analsis results of formation fluids in condensate gas reservoit with different wax contents
    组分 不同组分的摩尔分数,%
    7.04% 12.08% 17.79% 27.77%
    CO20.230 60.221 90.208 90.220 0
    N20.663 80.672 60.538 80.650 0
    C194.050 894.004 994.593 094.151 5
    C23.569 83.642 53.315 23.571 0
    C30.647 90.656 80.598 40.640 7
    iC40.132 50.129 30.118 50.126 1
    nC40.163 10.156 80.143 90.153 0
    iC50.073 90.067 70.062 70.066 0
    nC50.055 80.051 60.047 80.050 5
    C60.035 10.042 80.030 50.036 0
    C70.002 90.004 40.004 10.005 3
    C80.009 60.012 40.010 20.009 6
    C90.018 70.017 60.014 60.013 3
    C100.029 20.023 00.019 20.019 1
    C11+0.316 20.295 60.294 20.287 8
    ρ(C11+)/(kg·L−10.839 00.847 70.850 60.854 0
    M(C11+)/(g·mol−1210.99227.22232.99239.75
    凝析油密度/(kg·L−10.81370.820 10.823 70.831 0
    闪蒸气油比/(m3·m−326 248.1426 478.8126512.7326 591.47
     注:凝析油密度是在20 ℃下测得的。
    下载: 导出CSV 
    | 显示表格

    表3可以看出,不同含蜡量地层流体闪蒸气组分及其含量变化不大,这是由于该井凝析油中的蜡主要由C11以上的重组分组成,而闪蒸气主要是由C6以下的轻组分组成。

    表4可以看出,当地层流体中的含蜡量分别为7.04%,12.08%,17.79%和27.77%时,对应闪蒸油中C11以上重组分的摩尔分数分别为89.8018%,90.4715%,92.0240%和92.1012%。可以看出,含蜡量越高,闪蒸油中重组分的含量越高。

    表  4  不同含蜡量凝析气藏地层流体闪蒸油的组分分析结果
    Table  4.  Components and content of fluid flashed oil with different wax contents in condensate gas reservoirs
    组分 不同组分的摩尔分数,%
    7.04% 12.08% 17.79% 27.77%
    C2 0.007 2 0.008 0 0.013 4 0.008 8
    C3 0.003 2 0.004 8 0.005 3 0.003 2
    iC4 0.004 1 0.004 7 0.006 2 0.005 6
    nC4 0.009 2 0.008 7 0.010 8 0.008 8
    iC5 0.011 2 0.010 8 0.012 1 0.011 9
    nC5 0.012 1 0.010 8 0.011 6 0.014 8
    C6 0.080 9 0.106 7 0.101 1 0.218 3
    C7 0.377 6 0.564 0 0.522 1 0.679 2
    C8 1.385 5 1.785 3 1.471 9 1.377 6
    C9 3.043 6 2.875 7 2.365 2 2.153 7
    C10 5.263 7 4.149 0 3.456 3 3.416 9
    C11+ 89.801 8 90.471 5 92.024 0 92.101 2
    注:①为含蜡量,下同。
    下载: 导出CSV 
    | 显示表格

    表5可以看出,当地层流体中的含蜡量分别为7.04%,12.08%,17.79%和27.77%时,地层流体中C11以上重组分的分子质量分别为210.99,227.22,232.99和239.75 g/mol,凝析油密度分别为0.813 7,0.820 1,0.823 7和0.831 0 kg/L,闪蒸气油比为26 248.14,26 478.81,26 512.73和26 591.47 m3/m3。由此可见,含蜡量越高,地层流体中重组分的质量越高,相应凝析油的密度越高。通过单次闪蒸试验明确了不同含蜡量下地层流体中各组分的变化规律,为进一步明确高含蜡凝析气藏相变特征提供了支持。

    大北1101井地层温度为116.78 ℃,地层压力为90.207 MPa。采用逐级降压逼近法,利用HPVT−150型高压全温段PVT仪测试不同含蜡量地层流体样品的在地层温度下的露点压力,结果如图1所示。图2为不同含蜡量地层流体样品的相图。由图1图2可知,含蜡量分别为7.04%,12.08%,17.79%和27.77%的地层流体在地层温度下的露点压力分别为52.21,53.06,55.17和57.50 MPa,含蜡量越高,露点压力越高,露点线右移,这是由于地层流体含蜡量越高,其中所含重组分越多,压力降低重组分优先析出,重组分具有更高的露点压力,导致地层流体露点压力升高,使地层流体在更高的压力下发生相变,这预示在井筒中随着温度压力降低,凝析油中的重组分优先析出,析蜡点升高,导致井筒结蜡位置加深,这一认识为现场PVT取样深度和清蜡深度设计提供了依据。采用线性回归方法拟合图1中露点压力(pd)与含蜡量(ωw)的关系,结果为:

    图  1  地层温度下不同含蜡量地层流体的露点压力
    Figure  1.  Dew point pressure of formation fluids with different wax contents at formation temperature
    图  2  不同含蜡量地层流体的相图
    Figure  2.  Phase diagrams of formation fluids with different wax contents
    pd=0.264 2ωw + 50.213 R2 = 0.987 7 (1)

    由式(1)可知,含蜡量每升高1%,露点压力约升高0.2642 MPa,可利用式(1)预测不同含蜡量地层流体在地层温度下的露点压力。

    利用HPVT−150型高压全温段PVT仪进行不同含蜡量地层流体样品地层温度下的恒质膨胀试验(CCE试验),结果如图3图6所示。从图3可以看出:在压力低于30 MPa时,随着压力升高,不同含蜡量地层流体的相对体积快速降低;在压力高于30 MPa时,随着压力升高,不同含蜡量地层流体相对体积的下降趋势逐渐放缓。从图4可以看出,随着压力升高,不同含蜡量地层流体的偏差系数升高,偏差系数与压力呈现线性关系。从图5可以看出,随着压力升高,不同含蜡量地层流体的体积系数降低。从图4图5还可以看出,不同含蜡量地层流体的相对体积、偏差系数以及体积系数相近,这是由于地层流体中的蜡主要是C11以上重组分的一部分,其在地层流体中的占比极低,因此含蜡量对地层流体相对体积、偏差系数以及体积系数的影响很小,试验结果进一步证明了不同含蜡量地层流体的膨胀能力接近。从图6可以看出,高含蜡量地层流体反凝析液的饱和度更高,这是由于地层流体中的含蜡量越高,所含的重组分越多,同时由于重组分具有更高的露点压力,随着压力降低更容易从凝析气中析出,使反凝析液饱和度升高。这预示在井筒中随着温度压力降低,凝析油中的重组分优先析出,析蜡点升高,凝析液含量增加,地层流体中的蜡优先在井筒更深位置析出,在建立结蜡预测模型中应该考虑这一因素的影响。

    图  3  不同含蜡量地层流体的相对体积
    Figure  3.  Relative volume of formation fluids with different wax contents
    图  4  不同含蜡量地层流体的偏差系数
    Figure  4.  Deviation coefficient of formation fluids with different wax contents
    图  5  不同含蜡量地层流体的体积系数
    Figure  5.  Volume coefficient of formation fluids with different wax contents
    图  6  不同含蜡量地层流体反凝析液的饱和度
    Figure  6.  Retrograde condensed liquid saturation of formation fluids with different wax contents

    利用HPVT−150型高压全温段PVT仪进行不同含蜡量地层流体样品地层温度下的定容衰竭试验(CVD试验),结果如图7图9所示。从图7可以看出,凝析气藏地层流体中的含蜡量越高,反凝析液的饱和度越高,凝析气藏储层中反凝析液的饱和度总体小于1.29%,定容衰竭与恒质膨胀试验均得到了相似的结果,这证明了试验的准确性。从图8可以看出,含蜡量对采出地层流体中平衡气相偏差系数的影响较小,这是由于地层流体中的平衡气主要由C6以下的轻组分组成,因此含蜡量对其偏差系数的影响较小。从图9可以看出,在废弃压力(10 MPa)下,凝析油的采出程度随含蜡量升高而降低,其主要原因是高含蜡量凝析气中的重组分更多地反凝析出来,加剧了地层反凝析油的损失,导致凝析油采出程度降低。

    图  7  CVD试验的反凝析液饱和度
    Figure  7.  Retrograde condensed liquid saturation in CVD experiment
    图  8  CVD试验采出地层流体中平衡气相的偏差系数
    Figure  8.  Deviation coefficient of equilibrium gas phase in formation fluids produced from CVD experiments
    图  9  CVD试验的凝析油采出程度
    Figure  9.  Recovery degree of condensate oil in CVD experiments

    1)用大北凝析气田1101井地面凝析油与分离器分离的气体,开展了含蜡量对相态特征影响的试验研究。通过闪蒸试验发现,含蜡量越高,闪蒸油组分中C11以上重组分含量越高,闪蒸气组分变化较小,同时地层流体组分中重组分含量越高,导致闪蒸得到凝析油的密度越高。

    2)分析不同含蜡量地层流体的露点压力发现,露点压力与含蜡量呈线性关系,含蜡量升高1%,对应露点压力升高0.264 2 MPa,其原因是高含蜡量地层流体的重组分多,而重组分优先析出导致露点压力升高。

    3)含蜡量对地层流体膨胀能力的影响较小,含蜡量升高,地层流体重组分占比增大,反凝析作用增强,导致凝析油采出程度降低,这是由于高含蜡地层流体中重组分的反凝析作用使地层反凝析油的损失增大。

    4)凝析气井生产过程中,随着井筒温度压力从井底至井口降低,高含蜡流体中的重组分优先析出,这预示着井筒结蜡位置随地层流体含蜡量升高而加深,并且地层流体中的蜡优先在井筒更深位置析出,导致结蜡位置至井口井筒流体中的蜡含量降低。可以通过含蜡量对地层流体露点压力和反凝析液饱和度的影响规律确定井下取样深度、清蜡深度以及完善结蜡预测模型。

  • 图  1   注CO2开发不见效水平井日产油量叠加曲线

    Figure  1.   Normalized daily oil rate superposition curve of a non-affected horizontal well after CO2 injection

    图  2   注CO2开发见效水平井日产油量叠加曲线

    Figure  2.   A normalized daily oil rate superposition curve of affected horizontal well after CO2 injection

    图  3   注CO2见效前后日产量之间关系

    Figure  3.   The relationship between daily oil rates before and after effective CO2 flooding

    图  4   CZ区块注CO2采油井日产油量与注采比的关系

    Figure  4.   The relationship curves of daily oil rate and injection-production ratio of CO2 flooding in wells in the CZ Block

    图  5   TN区块注CO2采油井日产油量与注采比的关系

    Figure  5.   The relationship curves for the daily oil rate and the injection-production ratio of CO2 flooding well in the TN Block

    图  6   ZJD区块注CO2采油井日产油量与注采比的关系

    Figure  6.   Relationship curves for the daily oil rate and injection-production ratio of CO2 flooding well in the ZJD Block

    表  1   苏北盆地9个注CO2区块油藏基本参数

    Table  1   Basic reservoir parameters of 9 CO2 flooding blocks in the Subei Basin

    区块
    名称
    层位油藏
    类型
    油藏中深/
    m
    油藏有效
    厚度/m
    原始地层
    压力/MPa
    地层温度/
    孔隙
    度,%
    渗透率/
    mD
    地下原油密度/
    (kg·L–1
    地下原油黏度/
    (mPa·s)
    CS泰州组低渗透2 860.0038.80 32.7110.0 14.146.00.754 319.85
    CS阜三段低渗透2 945.009.2030.8104.0 19.012.90.799 05.14
    TN阜三段低渗透2 521.8014.50 26.386.720.147.00.788 05.67
    JN阜二段低渗透2 160.006.9022.574.313.017.00.816 98.40
    ZJD阜三段特低渗透3 150.005.1040.8105.9 17.8 5.60.803 43.79
    QT阜三段特低渗透3 056.005.8030.9101.2 17.7 4.00.803 43.78
    HL阜三段中高渗2 364.602.9024.681.326.793.70.821 07.86
    ZC垛一段中高渗1 649.7025.40 16.075.627.11 394.0 0.866 926.35
    XB垛一段普通稠油1 948.007.4022.281.028.4120.0 0.888 95 335.87
    下载: 导出CSV

    表  2   注CO2区块直井见气见效情况

    Table  2   Flooding effects and gas production in vertical wells in a CO2 flooding blocks

    区块及层位井数/口见效井
    占比,%
    不见效井
    占比,%
    油井见气不
    见效
    不见气
    不见效
    见气
    见效
    CN泰州组14 3110 7129
    CN阜一段1001100 0
    CZ阜三段11 0387327
    TN阜三段91266733
    HL阜三段3120 0100
    ZJD阜三段2002100 0
    QT阜三段1010 0100
    ZC垛一段70257129
    合计48 511 32 6733
    下载: 导出CSV

    表  3   注CO2区块水平井见气见效情况

    Table  3   Flooding effect and gas production in horizontal wells in CO2 flooding block

    区块及层位井数/口见效井
    占比,%
    不见效井
    占比,%
    油井见气不
    见效
    不见气
    不见效
    见气
    见效
    CN泰州组2110 0100
    CN阜一段2200 0100
    TN阜三段2200 0100
    HL阜三段1001 0 0
    ZJD阜三段72322971
    QT阜三段74122971
    合计21 11 552476
    下载: 导出CSV

    表  4   注CO2水平井压裂后见气见效情况

    Table  4   Flooding effect and gas production of CO2 flooding in fractured horizontal wells

    区块及层位井数/口见效井
    占比,%
    不见效井
    占比,%
    油井见气不
    见效
    不见气
    不见效
    见气
    见效
    CN阜一段11000100
    TN阜三段22000100
    ZJD阜三段52300100
    QT阜三段741229 71
    合计15 94213 87
    下载: 导出CSV

    表  5   注CO2未压裂水平井见气见效情况

    Table  5   Flooding effect and gas production of CO2 flooding in non-fractured horizontal wells

    区块及层位井数/口见效井
    占比,%
    不见效井
    占比,%
    油井见气不
    见效
    不见气
    不见效
    见气
    见效
    CN泰州组2110 0100
    CN阜一段1100 0100
    HL阜三段1001100 0
    ZJD阜三段2002100 0
    合计621350 50
    下载: 导出CSV

    表  6   苏北盆地注CO2见效井日产油量统计

    Table  6   Statistics on the oil production of wells with effective CO2 flooding in the Subei Basin

    采油井名日产油量/t单井日增油量/t增油倍比
    注气前注气见效后
    T111-10.441.090.651.48
    TP50.982.861.881.92
    T61.053.292.242.13
    C321.352.601.251.93
    H5P11.434.232.801.96
    C341.563.902.342.50
    CZ1–91.573.802.231.42
    T111.583.321.742.10
    CZ1–91.603.902.301.44
    T71.654.612.962.79
    CN21.685.904.222.51
    CQK–1181.833.811.981.08
    CZ22.004.092.092.05
    CZ1–42.244.602.361.05
    ZH1–22.255.983.731.66
    Z62.256.304.051.80
    C142.405.302.901.21
    S15–182.595.973.381.31
    C182.695.512.821.05
    Q101–1HF2.714.862.150.79
    CZ1–33.054.821.771.58
    CZ1–63.206.903.701.16
    ZH1–43.908.334.431.14
    CQK–144.9610.00 5.041.02
    Q1–205.838.552.720.47
    ZH1–66.8614.70 7.841.14
    QK–267.2014.95 7.751.08
    ZH3-XIE18.6415.07 6.431.74
    平均2.846.043.211.30
    下载: 导出CSV
  • [1] 钟张起,吴义平,付艳丽,等. 低渗透油藏CO2驱注入方式优化[J]. 特种油气藏, 2012, 19(1): 82–84. doi: 10.3969/j.issn.1006-6535.2012.01.019

    ZHONG Zhangqi, WU Yiping, FU Yanli, et al. Injection optimization in CO2 flooding for low permeability reservoir[J]. Special Oil and Gas Reservoirs, 2012, 19(1): 82–84. doi: 10.3969/j.issn.1006-6535.2012.01.019

    [2] 唐人选,唐小立,秦红祥. 注CO2混相驱油藏合理采收率确定[J]. 石油钻探技术, 2012, 40(3): 112–115. doi: 10.3969/j.issn.1001-0890.2012.03.023

    TANG Renxuan, TANG Xiaoli, QIN Hongxiang. Determination of reasonable recovery ratio with CO2 miscible flooding in reservoir[J]. Petroleum Drilling Techniques, 2012, 40(3): 112–115. doi: 10.3969/j.issn.1001-0890.2012.03.023

    [3] 宋道万. 二氧化碳混相驱数值模拟结果的主要影响因素[J]. 油气地质与采收率, 2008, 15(4): 72–74. doi: 10.3969/j.issn.1009-9603.2008.04.022

    SONG Daowan. Main factors affecting numerical simulation results of carbon dioxide miscible flooding[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(4): 72–74. doi: 10.3969/j.issn.1009-9603.2008.04.022

    [4] 吴忠宝,甘俊奇,曾倩. 低渗透油藏二氧化碳混相驱油机理数值模拟[J]. 油气地质与采收率, 2012, 19(3): 67–70. doi: 10.3969/j.issn.1009-9603.2012.03.018

    WU Zhongbao, GAN Junqi, ZENG Qian. Numerical simulation of mechanism of CO2 mixed flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(3): 67–70. doi: 10.3969/j.issn.1009-9603.2012.03.018

    [5] 王欢,廖新维,赵晓亮. 特低渗透油藏注 CO2驱参数优化研究[J]. 西南石油大学学报(自然科学版), 2014, 36(6): 95–104. doi: 10.11885/j.issn.1674-5086.2012.08.30.03

    WANG Huan, LIAO Xinwei, ZHAO Xiaoliang. Research on CO2 flooding parameters optimization of extra-low permeability reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(6): 95–104. doi: 10.11885/j.issn.1674-5086.2012.08.30.03

    [6] 王觉民,蒋华全. 水平井对各类油气藏的适应性分析[J]. 图书与石油科技信息, 1993, 7(4): 29–41.

    WANG Juemin, JIANG Huaquan. Adaptability analysis of horizontal wells to various oil and gas reservoirs[J]. Library & Petroleum Science-Technology Information, 1993, 7(4): 29–41.

    [7] 庄永涛,刘鹏程,郝明强,等. 低渗透油藏CO2驱井网模式数值模拟[J]. 断块油气田, 2013, 20(4): 477–480.

    ZHUANG Yongtao, LIU Pengcheng, HAO Mingqiang, et al. Numerical simulation of well pattern mode for CO2 flooding in low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2013, 20(4): 477–480.

    [8] 谢尚贤,韩培慧,钱昱. 大庆油田萨南东部过渡带注CO2驱油先导性矿场试验研究[J]. 油气采收率技术, 1997, 4(3): 13–19.

    XIE Shangxian,HAN Peihui,QIAN Yu. Pilot field test of CO2 injection for oil displacement in the eastern transitional zone of Sanan, Daqing Oilfield[J]. Oil and Gas Recovery Technology, 1997, 4(3): 13–19.

    [9] 俞凯, 刘伟, 陈祖华, 等.陆相低渗透油藏CO2混相驱技术[M].北京: 中国石化出版社, 2015: 7–146.

    YU Kai, LIU Wei, CHEN Zuhua, et al. CO2 miscible flooding technology in continental low permeability reservoirs[M]. Beijing: China Petrochemical Press, 2015: 7–146.

图(6)  /  表(6)
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  678
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-10-07
  • 网络出版日期:  2019-10-28
  • 刊出日期:  2019-12-31

目录

/

返回文章
返回