钻井液环保润滑剂SMLUB-E的研制及应用

钱晓琳, 宣扬, 林永学, 杨小华

钱晓琳, 宣扬, 林永学, 杨小华. 钻井液环保润滑剂SMLUB-E的研制及应用[J]. 石油钻探技术, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113
引用本文: 钱晓琳, 宣扬, 林永学, 杨小华. 钻井液环保润滑剂SMLUB-E的研制及应用[J]. 石油钻探技术, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113
QIAN Xiaolin, XUAN Yang, LIN Yongxue, YANG Xiaohua. Development and Application of an Environmental-FriendlyDrilling Fluid Lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113
Citation: QIAN Xiaolin, XUAN Yang, LIN Yongxue, YANG Xiaohua. Development and Application of an Environmental-FriendlyDrilling Fluid Lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113

钻井液环保润滑剂SMLUB-E的研制及应用

基金项目: 国家科技重大专项“耐高温高性能钻井液体系及井筒强化技术”(编号:2017ZX05005-005-002)资助
详细信息
    作者简介:

    钱晓琳(1978—),女,陕西蒲城人,1999年毕业于南京工业大学高分子化工专业,2006年获北京理工大学材料学专业博士学位,教授级高级工程师,主要从事钻井液体系及处理剂的研究工作。E-mail:qianxl.sripe@sinopec.com

  • 中图分类号: TE254+.4

Development and Application of an Environmental-FriendlyDrilling Fluid Lubricant SMLUB-E

  • 摘要:

    针对现有钻井液润滑剂耐温与环保性能难以兼顾的不足,以天然脂肪酸、有机多元醇等为原料,合成了钻井液环保润滑剂SMLUB-E。室内试验发现:膨润土浆中加入1.0% SMLUB-E时,摩阻系数可降至0.05,且形成的润滑膜强度高;聚磺钻井液中加入2.0% SMLUB-E,可使摩阻系数从0.31降至0.08,其润滑性能优于加入8.0%原油;SMLUB-E耐温160 ℃,对钻井液的流变性、滤失量无不利影响,无毒,环保性能好。SMLUB-E在塔河油田TP238CH井等深井进行了现场应用,加入SMLUB-E的钻井液中表现出良好的润滑降摩性能,大幅降低了井下摩阻,避免了托压、卡钻等复杂情况发生。研究结果表明,SMLUB-E具有良好的耐温性与环保性,能有效解决深井超深井钻井井下摩阻大的技术难题。

    Abstract:

    SMLUB-E, an environmental-friendly drilling fluid lubricant, was synthesized from natural fatty acids and organic polyols because the existing drilling fluid lubricant was not sufficiently temperature-resistant, nor did it have sufficient environmental friendliness. An evaluation conducted indoors in laboratory conditions demonstrated that when 1.0% SMLUB-E was added to bentonite mud, the friction coefficient could be as low as 0.05 while maintaining a high strength of lubricating film. When 2.0% SMLUB-E was added to polysulfonate drilling fluid, the friction coeffi-cient decreased from 0.31 to 0.08 with lubricity better than that of 8.0% crude oil added. SMLUB-E has a temperature resistance of 160 ℃, which has no adverse effect on rheological property and fluid loss of drilling fluid. Further, SMLUB-E is easy to biodegrade, non-toxic and environmental-friendly. Field Applications of SMLUB-E has conducted on deep wells including Well TP238CH in Tahe Oilfield, the drilling fluids added SMLUB-E showed good lubrication and friction-reducing property, significantly reduced downhole friction, avoided complex situations such as WOB hang-off and sticking, etc.. The results showed that SMLUB-E has a good performance in temperature resistance and environmental friendliness, and could effectively solve the technical problem of large downhole friction in the drilling of deep & ultra-deep wells.

  • 安塞油田长6特低渗透油藏经过多年的注水开发,目前主力区块均已进入中高含水开发期,受储层非均质性及微裂缝发育影响,剩余油分布复杂,稳产及提高采收率难度极大。随着油田开发的深入,剩余油挖潜逐渐由平面、层间和连片向剖面、层内和分散转变,通过对加密井、检查井的资料及野外露头对比分析,并结合测井解释结果,认为长6单砂体储层内的窜流、绕流等“非活塞式”驱替非常严重,水驱波及系数较小,水洗程度差异较大,纵向未水洗的油层厚度高达40%以上,剩余油富集区主要集中在油层纵向低渗段[12]。近年来,该油田采取了以常规压裂为主的老井重复改造措施,平均单井增油量小于1.0 t/d,且部分井产量递减快,有效期短,其主要原因是纵向低渗段难以有效改造。

    为了充分动用低渗段剩余油,提高重复改造效果,笔者提出了以控制裂缝高度为主的定面射孔压裂技术,通过改变射孔方式,并将压裂施工与控水材料相结合,在较小应力差条件下改造油层低渗段,取得了较好的增产效果,为安塞油田老井特低渗透油藏重复改造探索了新的技术途径。

    安塞油田已注水开发多年,测井及剩余油监测资料显示,长6层纵向高水淹层厚度占比24.7%,而未水淹的低渗段厚度占比34.4%,剩余油饱和度48.1%,剩余油比较富集[3](见表1)。研究表明,受层内非均质性影响,油井水淹仅仅是局部某一高渗透层段见水,目前注采条件下水驱难以波及低渗及致密层段,形成剩余油富集区[4]

    表  1  长6层水淹状况统计
    Table  1.  Statistics on the water flooding condition of Chang 6 Formation
    分类总厚
    度/m
    厚度占
    比,%
    原始平均含
    油饱和度,%
    剩余油
    饱和度,%
    含油饱和度下降
    幅度,百分点
    未水淹186.834.452.748.14.6
    低水淹222.040.953.939.114.8
    高水淹18.524.750.528.522.0
    平均142.433.352.438.613.8
    下载: 导出CSV 
    | 显示表格

    依据储层物性、孔喉特征及自然伽马等参数,建立了单砂体内部储量精细划分标准[5],并进行了储量分类:Ⅰ类储量主要分布在油层物性好的部位,渗透率大于0.8 mD,采出程度较高,容易建立(舌进)水淹通道,水洗程度较高,大部分层段已经高含水,这类油层占比43.7%,层内剩余储量仅17.9%,挖潜难度较大。Ⅱ类储量主要分布在油层物性相对较差部位,渗透率0.2~0.8 mD,水驱推进速度慢,采出程度低,这类油层占比33.4%,层内剩余储量较大,占比29.7%,应是挖潜的重点。Ⅲ类储量基本未动用,占比22.9%,是今后的增产潜力方向。

    表  2  单砂体内部储量划分标准
    Table  2.  Division standard for reserves inside the single sand body
    分类动用驱替特征孔隙度,%渗透率/mD微观孔喉半径/μm自然伽马/API
    Ⅰ类物性好,容易建立水淹通道过早水淹,驱替效果好,采注程度高≥14≥0.8≥0.250.3~0.5
    Ⅱ类水驱推进速度慢,物性相对较差,波及体积小,分布广,泥质含量高≥10~14≥0.2~0.8≥0.10~0.251.5~0.3
    Ⅲ类属于致密油,暂时无法驱替动用,但可计算储量,待今后气驱开发<10<0.2<0.100~1.5
    下载: 导出CSV 
    | 显示表格

    安塞油田长6油藏油层厚度较大,层内非均质性较强,油层高渗段受注水影响较大,含水达到60%以上,油层纵向低渗段剩余油成为挖潜的主要方向,近年来针对性地采取了重复压裂、补孔压裂等措施,均未达到理想的增产效果,相关技术措施和工艺面临诸多问题。

    根据近年措施效果分析,常规重复压裂措施增油量呈明显下降趋势,措施效果逐年变差,初期单井增油量由1.50 t/d下降到1.00 t/d,特别是部分井经过多轮次重复压裂措施后,单井增油量逐次降低,含水率不断上升,且随着选井空间的不断缩小,多轮次措施井已占措施工作量的30%,措施后初期增油量由0.81 t/d下降到0.67 t/d,含水率上升幅度达13.7百分点。在原有裂缝进行重复改造已经难以满足开发需求,需要探索新的技术途径。

    安塞油田长6油藏单砂体油层厚度较大,在长期水驱波及作用下,储层含水饱和度发生变化,岩石力学参数也随之发生变化[6]。室内岩心测试结果表明,岩石的弹性模量、Biot系数随着孔隙压力的增大而减小;岩石的泊松比随着孔隙压力的增大而增大,但增大幅度较小[7],表明岩石的塑性不断增强,脆性不断减弱。在相同孔隙压力(pp=8.0 MPa)条件下,室内三轴岩石压缩测试求得储层水平方向上杨氏模量和泊松比分别为19.6 GPa和0.28,垂直方向上杨氏模量和泊松比分别为20.3 GPa和0.24。

    研究表明,长期注采条件下岩石的杨氏模量、最小水平主应力等相应发生变化;同时,室内实验发现储层非均质性对岩石应力影响较大。综合考虑岩石力学参数的影响,改进了应力剖面计算模型[8]。综合考虑层间孔隙压力变化、岩石力学参数变化结果及非均质性的影响,计算得出长期注采条件下储隔层应力差为2.2~3.3 MPa。

    为验证较小应力差条件下重复压裂后裂缝的扩展特征,利用Stimplan压裂软件模拟了X18–06井常规补孔压裂后,在层内较小应力差作用下裂缝的延伸扩展,模拟基本参数为:垂深1 160.00 m,有效渗透率2.0 mD,孔隙度12%。油层上部采用常规螺旋射孔,射孔段1 570.00~1 574.00 m,压裂施工参数为:砂量10 m3,排量1.0 m3/min,入地液量75 m3。结果表明,压裂后有70%的压裂液充填扩展在原裂缝(1 555.00~1 595.00 m井段),裂缝高度40.00 m, 裂缝纵向窜通明显,仅有30%左右压裂液压入新裂缝,低渗层段改造程度较低[9],说明在层内储隔层应力面较弱情况下常规补孔压裂难以控制裂缝的纵向延伸(见图1)。

    图  1  X18–06井常规压裂裂缝模拟结果
    Figure  1.  Fracture simulation results for conventional fracturing in Well X18–06

    根据安塞油田长6储层特征,要提高油层纵向动用程度,需要控制裂缝高度,尽可能避免新裂缝与原裂缝沟通压窜[10]。常规螺旋射孔与定面射孔的地层应力分布情况如图2图3所示。

    图  2  常规螺旋射孔地层应力分布矢量图
    Figure  2.  Formation stress distribution vector plot for conventional spiral perforation
    图  3  定面射孔地层应力分布矢量图
    Figure  3.  Formation stress distribution vector plot for fixed-plane perforating

    图2可以看出,常规螺旋射孔孔眼主要沿垂直方向分布,最大主应力点在垂向分布较密,裂缝易沿着垂直方向起裂贯通,最终形成垂直裂缝。从图3可以看出,定面射孔孔眼呈扇形平面分布,由于同一平面内孔眼间的相互影响[11],最大主应力点在水平方向分布较密,形成水平应力集中面[12],两侧的最大主应力向中间孔眼集中,引导水力裂缝优先从该平面起裂,并向外延伸扩展贯通形成径向平面裂缝,从而减缓裂缝的纵向扩展幅度。

    为验证定面射孔压裂的裂缝扩展规律,利用有限元软件Abaqus6进行建模,研究不同压力、不同射孔相位角情况下的岩体应力场、变形场及射孔孔道连通–融合特征[13],得到裂缝延伸扩展规律:在井筒平行于y轴的情况下,射孔相位角分别为30°,45°,60°,75°和90°时,定面射孔压裂裂缝主要沿井筒径向扩展[14],同一压力作用下,射孔相位角由30°增大到60°时,裂缝径向融合面积呈增加趋势;射孔相位角大于60°时,裂缝径向融合面积减小,不利于形成径向裂缝面(见图4)。综合分析,射孔相位角为60°条件下裂缝径向融合面积最大,更有利于裂缝沿径向扩展。

    图  4  定面射孔压裂裂缝扩展模拟结果
    Figure  4.  Simulation results of fracture propagation on fixed-plane perforating and fracturing

    根据W90–242井油藏地质参数及现场施工情况,建立了地应力剖面模型,模拟定面射孔压裂对缝高的影响。模拟基本参数为:井深1 200.00 m,有效渗透率2.1 mD,孔隙度12.8%,储隔层应力差2.0 MPa。在油层上部低渗段进行定面射孔,研究裂缝扩展规律,施工参数以实际为准,该井射孔井段为1 152.00~1 154.00 m,采用102–16–180–70定面射孔枪和SDP44HMX32射孔弹,射孔密度12孔/m,加砂量15 m3,排量1.4 m3/min,入地液量60 m3。模拟结果表明:80%左右的裂缝在低渗段扩展延伸(1 140.00~1 160.00 m井段),裂缝纵向扩展距离得到有效控制[15],油层低渗段得到有效改造(见图5)。

    图  5  W90–242井定面射孔压裂裂缝模拟结果
    Figure  5.  The results of fractures simulation on fixed-plane perforating and fracturing in Well W90–242

    考虑现场施工条件,在工艺上考虑控制裂缝纵向延伸参数条件,尽可能在施工时将新裂缝纵向高度控制在低渗段油层内部,避免沟通已经水洗的老裂缝,确保能够充分改造低渗段油层。

    根据前文2.2的研究结果,要使储层压裂裂缝受储隔层应力控制,缝内净压力需小于3.0 MPa[16]。通过理论计算,得到了净压力与排量之间的关系曲线(见图6)。从图6可以看出,要达到控制裂缝高度所需的缝内净压力,排量需小于1.6 m3/min;排量大于1.6 m3/min后,裂缝高度出现突升,储层纵向裂缝延伸易失控,从而影响改造效果。综合考虑,施工排量优选为1.4~1.6 m3/min。

    图  6  净压力与排量的关系曲线
    Figure  6.  Net pressure versus discharge capacity curve

    为了充分发挥水力裂缝的作用,避免油井过早水淹或压裂裂缝过长引起水窜,需要研究入地液量对水力裂缝长度的影响,以便确定不同井网形式和井距下的最优水力裂缝参数,设计优化油井压裂改造方案[17]。安塞油田长6油藏300 m×120 m矩形反九点井网经过多年注采,水驱前缘逼近原裂缝周围,需要控制压裂裂缝长度。模拟结果表明,入地液量大于80 m3时,裂缝长度大于90 m,裂缝穿透比大于0.3,容易沟通水线。因此,要控制裂缝穿透比小于0.3,最终优化缝长60~80 m,入地液量60~80 m3

    为了控制含水率上升,采用选择性润湿支撑剂与石英砂支撑剂组合来支撑裂缝,根据储层闭合应力大小和支撑剂导流试验评价结果[18],优选40/70目选择性润湿支撑剂与20/40目石英砂的组合。

    为了更好地控制缝内净压力和措施后的含水率,前置阶段注入10 m3可改变相渗特性的压裂液,控制裂缝端部含水率,加砂初期加入40/70目选择性润湿支撑剂5~10 m3,利用包裹树脂技术改变相渗透率,阻止裂缝内含水率的上升;主压裂阶段加入20/40目的石英砂10~15 m3,采用弱交联压裂液作为携砂液,降低液体黏度及砂比,控制裂缝纵向延伸,平均砂比控制在20%~25%。

    安塞油田78口井的长6特低渗透油藏应用定面射孔压裂技术进行了压裂改造,平均单井增油量1.80 t/d,含水率43.0%。与常规补孔压裂技术的应用效果相比,平均单井增油量提高0.70 t/d,含水率降低20.0百分点。从长期生产数据可以看出,该技术增油控水作用明显,稳产效果较好,且措施效果持续有效(见图7)。

    图  7  定面射孔压裂试验井生产曲线
    Figure  7.  Production curve of fixed-plane perforating and fracturing test well

    W101–232井位于安塞油田长6区块中部,2015年7月投产,初期产油量2.10 t/d,含水率8.3%;措施前产油量0.68 t/d,含水率70.6%,累计产油量13 460 t。

    2017年6月,综合分析该区井网、水驱系统和地层压力等情况,对W101–232井长6下段低渗段油层实施定面射孔压裂,开发低渗段剩余油。设计采用选择性润湿支撑剂,增大裂缝中水的流动阻力,降低措施后的含水率。单井施工参数优化设计为:阶段排量1.4 m3/min,前置液注入10 m3可改变相渗特性的压裂液,携砂液前段加入40/70目选择性润湿支撑剂5.0 m3,携砂液后段加入常规20/40目支撑剂15.0 m3进行裂缝充填,总入地液量75 m3。该井措施后产液量2.98 m3/d,产油量1.63 t/d,含水率35.6%,取得了较好的压裂增产效果。

    1)安塞油田长6油藏老裂缝周围水驱波及程度较高,储层纵向低渗段剩余油是油田增产的主要方向。

    2)储隔层应力差变弱对重复压裂效果的影响较大,对射孔方式、压裂液(包括控水材料)、支撑剂和施工参数进行优化,形成了定面射孔压裂技术,解决了应力面较弱条件下的压裂改造难题。

    3)从裂缝监测和压裂效果来看,定面射孔压裂实现了纵向低渗段油层的充分改造,增产效果显著。

    4)定面射孔是诱导裂缝沿径向起裂的重要方式,需进一步研究岩石地应力与裂缝起裂的关系及其影响因素,提高该技术的应用效果。

  • 图  1   SULUB-E的分子结构示意

    Figure  1.   Molecular structure of SULUB-E

    图  2   膨润土浆中分别加入SMLUB-E与原油后的摩阻系数

    Figure  2.   Friction coefficient of bentonite mud after adding SMLUB-E and crude oil respectively

    图  3   SMLUB-E与原油在聚磺钻井液中的润滑效果对比

    Figure  3.   Comparison of lubricating effect between SMLUB-E and crude oil in polysulfide drilling fluid

    图  4   加入SMLUB-E的膨润土浆在不同温度下老化后的摩阻系数

    Figure  4.   Post-aging friction coefficient of bentonite mud with SMLUB-E at different temperatures

    图  5   摩阻随井深与井斜角的变化

    Figure  5.   Frictional resistance changes with the depth and deviation of the well

    表  1   SMLUB-E形成的极压膜强度

    Table  1   Strength of extreme pressure film formed by SMLUB-E

    负载扭矩/
    (N·m)
    极压润滑仪表盘读数
    5.0%膨润土浆+
    8.0%乳化原油
    5.0%膨润土浆+
    1.0% SMLUB-E
    5.622 6
    11.33810
    16.95414
    22.66218
    28.2咬合21
    33.524
    39.526
    45.230
    50.8咬合
    下载: 导出CSV

    表  2   SMLUB-E对膨润土浆和聚磺钻井液流变性和滤失性的影响

    Table  2   Influence of SMLUB-E on rheological and filtration properties of bentonite mud and polysulfide drilling fluid

    试验浆体表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    API滤失量/mL
    5.0%膨润土浆(A) 8.5 4.0 4.525.0
    A+1.0% SMLUB-E 8.5 4.0 4.520.0
    A+1.5% SMLUB-E 9.0 5.0 4.017.0
    A+2.0% SMLUB-E 8.5 4.0 4.517.0
    聚磺钻井液(B)43.532.011.5 5.2
    B+1.0% SMLUB-E52.540.012.5 4.2
    B+1.5% SMLUB-E50.038.012.0 4.0
    B+2.0% SMLUB-E52.540.012.5 4.0
    下载: 导出CSV

    表  3   钻井过程中钻井液润滑性的变化

    Table  3   Lubricity changes of drilling fluid during drilling operation

    开次井深/mSMLUB-E加量,%摩阻系数滤饼黏滞系数
    一开6 239.000 0.330.140 5
    6 250.000 0.320.140 5
    6 263.000.250.300.052 4
    6 273.000.800.270.052 4
    6 304.001.300.220.052 4
    6 335.001.800.180.043 7
    6 396.002.000.140.043 7
    6 461.002.000.140.043 7
    二开6 467.002.000.130.043 7
    6 497.002.200.120.043 7
    6 531.002.200.120.043 7
    下载: 导出CSV
  • [1]

    ESPAGNE B J L, LAMRANI-KERN S, RODESCHINI H. Biodegradable lubricating composition and use thereof in a drilling fluid, in particular for very deep reservoirs: US 8846583[P]. 2014-09-30[2018-10-28].

    [2] 杨芳.纳米碳球耐高温钻井液润滑剂的研究[D].长春: 吉林大学, 2013.

    YANG Fang. Study of nanosize carbon spheres as high temperature drilling fluid lubricant[D]. Changchun: Jilin University, 2013.

    [3]

    KNOTHE G, STEIDLEY K R. Lubricity of components of biodiesel and petrodiesel: the origin of biodiesel lubricity[J]. Energy & Fuels, 2005, 19(3): 1192–1200.

    [4]

    NGUYEN D, STEVENSON D, ROHR B. Lubricant additives for wellbore or subterranean drilling fluids or muds: US20150218433[P]. 2015-08-06[2018-10-28].

    [5]

    BORUGADDA V B, GOUD V V. Improved thermo-oxidative stability of structurally modified waste cooking oil methyl esters for bio-lubricant application[J]. Journal of Cleaner Production, 2015, 112(5): 4515–4524.

    [6]

    MASSEY F P, MASSEY O N. Lubrication for drilling fluid: US9598625[P]. 2017-03-21[2018-10-28].

    [7] 刘保双,唐代绪. 一种钻井液用白油润滑剂HML的研究[J]. 天然气工业, 2002, 22(4): 48–49. doi: 10.3321/j.issn:1000-0976.2002.04.014

    LIU Baoshuang, TANG Daixu. Study on a new type drilling fluids with white oil lubricant HML[J]. Natural Gas Industry, 2002, 22(4): 48–49. doi: 10.3321/j.issn:1000-0976.2002.04.014

    [8]

    RUARK G A, PIKE R W. Synergistic bead lubricant and methods for providing improved lubrication to drilling fluids for horizontal drilling: US8324136[P]. 2012-12-04[2018-10-28].

    [9] 霍胜军, 贾万瑾, 张萍, 等.一种新型钻井液用液体润滑剂性能研究[J].石油钻采工艺, 2007, 29(增刊1): 40–42.

    LEI Shengjun, JIA Wanjin, ZHANG Ping, et al. Research on performance of a new liquid lubricate for drilling fluid[J]. Oil Drilling & Production Technology, 2007, 29(supplement 1):40–42.

    [10] 袁建强,王越之,罗春芝. JMR聚醚润滑剂的研制与应用[J]. 石油钻探技术, 2005, 33(3): 31–32.

    YUAN Jianqiang, WANG Yuezhi, LUO Chunzhi. Development and application of water base lubricant-JMR[J]. Petroleum Drilling Techniques,, 2005, 33(3): 31–32.

    [11] 孙启忠,胥洪彪,刘传情,等. 聚合醚润滑剂HLX的研究及应用[J]. 石油钻探技术, 2003, 31(1): 42–43.

    SUN Qizhong, XU Hongbiao, LIU Chuanqing, et al. Study and application of the polyether lubricant HLX[J]. Petroleum Drilling Techniques, 2003, 31(1): 42–43.

    [12] 薛玉志,蓝强,李公让,等. 超低渗透钻井液体系及性能研究[J]. 石油钻探技术, 2009, 37(1): 46–52.

    XUE Yuzhi, LAN Qiang, LI Gongrang, et al. Ultra-low permeable drilling lluid and its performance[J]. Petroleum Drilling Techniques, 2009, 37(1): 46–52.

    [13] 何竹梅,薛芸,曾甘林,等. 石蜡乳液润滑剂在江苏油田钻井中的应用[J]. 石油钻探技术, 2010, 38(3).

    HE Zhumei, XUE Yun, ZENG Ganlin, et al. Application of wax emulsion lubricants in drilling operations in Jiangsu Oilfield[J]. Petroleum Drilling Techniques, 2010, 38(3).

    [14] 黄贤杰. 塔河油田TK636H超深水平井钻井液技术应用[J]. 西部探矿工程, 2007, 19(7): 59–61. doi: 10.3969/j.issn.1004-5716.2007.07.024

    HUANG Xianjie. Ultra deep horizontal well drilling fluid technology of Well TK636H in Tahe Oilfield[J]. West-China Exploration Engineering, 2007, 19(7): 59–61. doi: 10.3969/j.issn.1004-5716.2007.07.024

    [15]

    AMANULLAH M, BUBSHAIT A S, FUWAIRES O A. Ecofriendly lubricating additives for water-based wellbore drilling fluids: US9834718[P]. 2017-12-05[2018-10-28].

    [16]

    KANIA D, YUNUS R, OMAR R, et al. A review of biolubricants in drilling fluids: recent research, performance, and applications[J]. Journal of Petroleum Science & Engineering, 2015, 135: 177–184.

    [17] 王伟吉,邱正松,钟汉毅,等. 钻井液用新型纳米润滑剂SD–NR的制备及特性[J]. 断块油气田, 2016, 23(1): 113–116.

    WANG Weiji, QIU Zhengsong, ZHONG Hanyi, et al. Preparation and properties of nanoparticle-based lubricant SD–NR for drilling fluids[J]. Fault-Block Oil & Gas Field, 2016, 23(1): 113–116.

    [18] 董兵强,邱正松,邓智,等. 钻井液用微乳液润滑剂NE的研究与应用[J]. 钻井液与完井液, 2018, 35(3): 54–59.

    DONG Bingqiang, QIU Zhengsong, DENG Zhi,et al. Study and application of a drilling fluid microemulsion lubricant NE[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 54–59.

    [19] 李小瑞,张宇,景晓琴,等. 一种高性能环保型钻井液润滑剂的研究与应用[J]. 钻井液与完井液, 2018, 35(4): 46–50.

    LI Xiaorui, ZHANG Yu, JING Xiaoqin, et al. Evaluation and application of the high performance environmentally friendly drilling fluid lubricant HPRH[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 46–50.

    [20] 宣扬,钱晓琳,林永学,等. 水基钻井液润滑剂研究进展及发展趋势[J]. 油田化学, 2017, 34(4): 721–726.

    XUAN Yang, QIAN Xiaolin, LIN Yongxue, et al. Research progress and development trend on environmental-friendly lubricant in water-based drilling fluid[J]. Oilfield Chemistry, 2017, 34(4): 721–726.

    [21] 李建山. 杭锦旗区块防塌防漏钻井液技术[J]. 钻井液与完井液, 2019, 36(3): 308–314.

    LI Jianshan. Drilling fluid technology for borehole wall stabilization and mud loss control in Block Hangjinqi[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 308–314.

  • 期刊类型引用(3)

    1. 杨振策. 低渗透油田注水采油开发技术研究. 天津化工. 2021(06): 72-75 . 百度学术
    2. 范宇,汤继周,陈伟华,张卓,唐波涛,杨文涛. 河道致密砂岩螺旋射孔完井压裂优化设计. 测井技术. 2021(06): 646-656 . 百度学术
    3. 房娜,姜光宏,程奇,李广龙,王双龙. 裂缝性油藏不同见水模式下的注水优化. 断块油气田. 2020(05): 633-637 . 百度学术

    其他类型引用(2)

图(5)  /  表(3)
计量
  • 文章访问数:  956
  • HTML全文浏览量:  360
  • PDF下载量:  67
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-10-28
  • 修回日期:  2019-12-26
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2019-12-31

目录

/

返回文章
返回