南海莺歌海盆地中深层高温高压水平井钻井关键技术

吴江, 李炎军, 张万栋, 杨玉豪

吴江, 李炎军, 张万栋, 杨玉豪. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112
引用本文: 吴江, 李炎军, 张万栋, 杨玉豪. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112
WU Jiang, LI Yanjun, ZHANG Wandong, YANG Yuhao. Key Drilling Techniques of HTHP Horizontal Wells in Mid-Deep Strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112
Citation: WU Jiang, LI Yanjun, ZHANG Wandong, YANG Yuhao. Key Drilling Techniques of HTHP Horizontal Wells in Mid-Deep Strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112

南海莺歌海盆地中深层高温高压水平井钻井关键技术

基金项目: 国家科技重大专项“莺-琼盆地高温高压天然气富集规律与勘探开发关键技术”(编号:2016ZX05024-005)、中国海洋石油集团公司科技重大专项“莺琼盆地高温高压钻完井液、固井工艺研究与应用”(编号:CNOOC-KJ 135 ZDXM 24 LTD ZJ02)联合资助
详细信息
    作者简介:

    吴江(1983—),男,河南郑州人,2007年毕业于长江大学应用化学专业,2010年获中国石油大学(北京)油气井工程专业硕士学位,高级工程师,主要从事海洋钻井工艺研究及现场技术工作。E-mail:wujiang2@cnooc.com.cn

  • 中图分类号: TE5243+.1

Key Drilling Techniques of HTHP Horizontal Wells in Mid-Deep Strata of the Yinggehai Basin, South China Sea

  • 摘要:

    针对南海莺歌海盆地中深层高温高压气藏水平井钻井中高密度钻井液流变性难以调控、大斜度井段套管磨损严重、摩阻扭矩大、钻具负荷大及大斜度井固井质量难以保证等问题,从保障钻井安全和提高钻井时效出发,进行了井身结构设计和抗高温高密度油基钻井液技术、钻井液微米级重晶石加重技术、高密度油基钻井液滤饼冲洗技术、高温高压含CO2气井套管材质优选、高温高压水平井段安全钻进等方面的技术研究,形成了南海莺歌海盆地中深层高温高压水平井钻井关键技术。现场应用表明,该技术可以有效保障安全高效钻井和提高固井质量,应用井投产后清喷产能比预期高30%。水平井钻井关键技术为南海莺歌海盆地中深层高温高压水平井钻井提供了技术保障,也可在同类条件同类型井钻井中推广应用。

    Abstract:

    During the drilling process of horizontal wells in high temperature and high pressure gas reservoir in Yinggehai Basin, South China Sea, the rheological property of high density drilling fluids is difficult to control, the wearing degree of the highly-deviated well section casing is severe, the toque drag and drilling string are large, and the cementing quality of highly-deviated well section is hard to assure, etc. Based on this situation, to ensure the drilling safety and improve drilling efficiency, research work have been done on casing program design, oil-based drilling fluids technology resisting high temperature and density, the weighting technique of micrometre-scale barite, filter cake flushing technique of high density oil-based drilling fluids, the optimization of casing materials for high temperature and high pressure gas well containing CO2, and the safe drilling technology of HTHP horizontal wells, etc., all of which have formed the key drilling techniques of HTHP horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea. The field application showed that the techniques could effectively ensure the safety and high-efficiency drilling, improve the cementing quality, and the blowout production capacity is 30% higher than expected. The key drilling techniques of horizontal well, which could provide technical support for the drilling of HTHP horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea, could also be applied in the wells of the same type under the same condition.

  • 图  1   莺歌海盆地中深层地层四压力剖面

    Figure  1.   Four pressure profiles of mid-deep strata in the Yinggehai Basin

    图  2   微米级超微重晶石粒度分布

    Figure  2.   Particle size distribution of micron-ultafine barite

    图  3   冲洗液冲洗前后的滤饼

    Figure  3.   Filter cake before and after flushing

    图  4   腐蚀速率与温度、CO2分压的关系

    Figure  4.   Relationship between corrosion rate and temperature, CO2 partial pressure

    表  1   莺歌海盆地中深层高温高压水平井井身结构设计结果

    Table  1   Casing program designed of high temperature and high pressure horizontal wells in the mid-deep formation of Yinggehai Basin

    开钻程序钻头直径/mm套管直径/mm备注
    导眼锤入762.0 采用海洋工程船锤入,隔水管壁厚25.4 mm,钢级D36,入泥72.00 m
    1660.4508.0 套管下至井深500.00 m,通过井控措施防浅层气,保证在下部井段安全钻进
    2444.5339.7 套管下至莺歌海组二段中下部巨厚泥岩,尽可能封固莺歌海组二段砂层,以满足下一开次在压力过渡带的钻进要求
    3311.1244.5 套管下至黄流组一段顶部以上泥岩层并尽可能增加下深,以缩短ϕ215.9 mm裸眼段长度
    4215.9177.8 以适当的井斜角揭开目的层
    5149.2149.2 水平段在储层中,需下入打孔管支撑井壁,尾管内打水泥塞封隔储层后回接ϕ177.8 mm套管,再钻开套管附件及水泥塞进行完井作业,生产封隔器下至ϕ177.8 mm回接套管内,尾管悬挂器顶部以上50.00 m、生产封隔器以上100.00 m的回接套管至ϕ177.8 mm尾管均采用防腐套管
    下载: 导出CSV

    表  2   新型抗高温高密度油基钻井液基本性能

    Table  2   Basic properties of new high temperature and high density oil-based drilling fluids

    油水比状态密度/(kg·L–1表观黏度/(mPa·s)塑性黏度/(mPa·s)动切力/Paϕ100ϕ6/ϕ3静切力/Pa破乳电压/V高温高压滤失量/mL
    80 : 20滚动前1.8043.53211.5289.0/8.04.5/5.01 763
    热滚16 h31.0265.0184.0/3.03.0/4.0 9070.8
    热滚96 h23.0203.0124.0/3.02.0/2.0 4222.8
    85 : 15滚动前1.9036.5297.5228.0/7.04.0/5.01 973
    热滚16 h27.5234.5165.0/5.03.0/4.01 1081.2
    热滚96 h22.0202.0113.0/2.01.0/2.0 4573.8
    95 : 5滚动前2.0026.5215.5216.5/5.54.0/4.0 2 000+
    热滚16 h22.0193.0194.0/4.03.0/4.01 9771.6
    热滚96 h20.0172.5173.0/1.02.0/1.01 0871.5
     注:热滚温度为165 ℃,流变性在50 ℃下测得;高温高压滤失量测试条件为165 ℃,3.5 MPa。
    下载: 导出CSV

    表  3   新型抗高温高密度油基钻井液沉降稳定性试验结果

    Table  3   Sedimentary stability test results of new high temperature and high density oil-based drilling fluid

    老化前密度/
    (kg·L–1
    老化时间/
    h
    取样位置老化后密度/
    (kg·L–1
    沉降系数
    1.3016上部1.290.50
    下部1.31
    48上部1.270.51
    下部1.33
    96上部1.270.51
    下部1.33
    1.6016上部1.580.51
    下部1.64
    48上部1.560.51
    下部1.65
    96上部1.530.52
    下部1.67
    1.8016上部1.820.51
    下部1.86
    48上部1.80.51
    下部1.89
    96上部1.790.51
    下部1.89
     注:老化条件165 ℃下滚动。
    下载: 导出CSV

    表  4   模拟地层水条件下不同材质试样的腐蚀速率

    Table  4   Corrosion rate of different materials under simulated formation water

    材质液相腐蚀速率/(mm·a–1气相腐蚀速率/(mm·a–1
    13Cr–L800.005 430.009 07
    13CrS–1100.003 340.007 50
    13Cr–L800.005 920.009 84
    13CrS–1100.000 980.006 55
    13CrM–1100.007 270.014 51
    TN80–3Cr0.004 560.072 07
    P1100.015 920.075 38
    N800.018 550.092 32
    下载: 导出CSV

    表  5   井深4 900.00 m处ϕ149.2 mm小井眼复合钻杆水力模拟结果

    Table  5   Hydraulic simulation results of compound drill pipe in ϕ149.2 mm slim hole at depth of 4 900.00 m

    钻杆直径及长度排量/(L·min–1泵压/MPa当量循环密度/(kg·L–1
    ϕ149.2 mm套管鞋ϕ149.2 mm井眼底部
    ϕ149.2 mm钻杆>3 300.00 m60015.2041.9051.927
    ϕ101.6 mm钻杆1 600.00 m90019.4651.9171.944
    ϕ149.2 mm钻杆>3 800.00 m60015.0451.9101.934
    ϕ101.6 mm钻杆1 100.00 m90018.7551.9231.951
    下载: 导出CSV
  • [1] 李炎军,吴江,黄熠,等. 莺歌海盆地中深层高温高压钻井关键技术及其实践效果[J]. 中国海上油气, 2015, 27(4): 102–106.

    LI Yanjun, WU Jiang, HUANG Yi, et al. Key technology and application of HTHP drilling in mid-deep formation in Yinggehai Basin[J]. China Offshore Oil and Gas, 2015, 27(4): 102–106.

    [2] 罗鸣, 吴江, 陈浩东, 等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术, 2019, 47(1): 8–12.

    LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-High temperature high pressure drilling technology for narrow safety density window strata in the Western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8–12.

    [3] 黄洪春,沈忠厚,高德利. 三高气田套管磨损研究及应用分析[J]. 石油机械, 2015, 43(4): 28–33.

    HUANG Hongchun, SHEN Zhonghou, GAO Deli. Wear research of casings in high hydrogen sulphide, high pressure and high production gas field[J]. China Petroleum Machinery, 2015, 43(4): 28–33.

    [4] 杨春旭,孙铭新,唐洪林. 大位移井套管磨损预测及防磨技术研究[J]. 石油机械, 2016, 44(1): 5–9.

    YANG Chunxu, SUN Mingxin, TANG Honglin. Casing wear prediction and casing protection technology for extended reach well[J]. China Petroleum Machinery, 2016, 44(1): 5–9.

    [5] 李海洋.深井套管磨损预测与防磨减摩措施研究[D].成都: 西南石油大学, 2014.

    LI Haiyang. Wear prediction and anti-friction and reduction measures for casing in deep wells[D]. Chengdu: Southwest Petroleum University, 2014.

    [6] 杨玉坤,翟建明. 四川盆地元坝气田超深水平井井身结构优化与应用技术[J]. 天然气工业, 2015, 35(5): 79–84. doi: 10.3787/j.issn.1000-0976.2015.05.012

    YANG Yukun, ZHAI Jianming. Casing program optimization technology for ultra-deep horizontal wells in the Yuanba Gasfield, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(5): 79–84. doi: 10.3787/j.issn.1000-0976.2015.05.012

    [7] 李建成, 杨鹏, 关键, 等. 新型全油基钻井液体系[J]. 石油勘探与开发, 2014, 41(4): 490–496. doi: 10.11698/PED.2014.04.16

    LI Jiancheng, YANG Peng, GUAN Jian, et al. A new type of whole oil-based drilling fluid[J]. Petroleum Exploration and Development, 2014, 41(4): 490–496. doi: 10.11698/PED.2014.04.16

    [8] 孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术, 2015, 43(3): 55–60.

    SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.

    [9] Q/HS 14015—2018 海上油气井油管和套管防腐设计指南[S].

    Q/HS 14015—2018 Guideline for tubing and casing anticorrosion design of offshore oil and gas wells[S].

    [10] 何英明,刘书杰,耿亚楠,等. 莺歌海盆地高温高压水平气井井控影响因素[J]. 石油钻采工艺, 2016, 38(6): 771–775.

    HE Yingming, LIU Shujie, GENG Yanan, et al. Factors influencing the well control of HTHP horizontal wells in the Yinggehai Basin[J]. Oil Drilling & Production Technology, 2016, 38(6): 771–775.

    [11] 吴超,陈小锋,王磊. 钻井液密度窗口随钻预测理论及其工程应用[J]. 石油学报, 2016, 37(3): 399–405. doi: 10.7623/syxb201603012

    WU Chao, CHEN Xiaofeng, WANG Lei. A theory on predicting drilling fluid density windows while drilling and its engineering application[J]. Acta Petrolei Sinica, 2016, 37(3): 399–405. doi: 10.7623/syxb201603012

  • 期刊类型引用(11)

    1. 庞涛,姜在炳,惠江涛,贾秉义. 煤系水平井定向射孔压裂裂缝扩展机制. 煤田地质与勘探. 2024(04): 68-75 . 百度学术
    2. 安果涛,谢昕,孔祥伟,王存武. 射孔间距-倾角对深煤层水力裂缝扩展影响的离散元分析. 科学技术与工程. 2024(18): 7623-7629 . 百度学术
    3. 杨兆中,杨晨曦,李小刚,闵超. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例. 科学技术与工程. 2020(12): 4680-4686 . 百度学术
    4. 马东民,王传涛,夏玉成,张嘉睿,邵凯,杨甫. 大佛寺井田煤层气井压裂参数优化方案. 西安科技大学学报. 2019(02): 263-269 . 百度学术
    5. 李昀昀,傅小康,李千山,孙宁蔚. 我国煤层气排采技术研究现状. 石油化工应用. 2019(04): 1-4+10 . 百度学术
    6. 孙宁蔚. 基于灰色关联的沁水盆地煤层气井排采特征分析. 石油化工应用. 2019(11): 7-9+32 . 百度学术
    7. 杨兆中,刘云锐,张平,李小刚,易良平. 煤层气直井地层破裂压力计算模型. 石油学报. 2018(05): 578-586 . 百度学术
    8. 杨新新,王伟锋,姜帅,杨浩珑. 抗高温高密度低伤害压裂液体系. 断块油气田. 2017(04): 583-586 . 百度学术
    9. 张快乐,刘化普. 利用数值试井反演井组低渗透储层参数. 中外能源. 2017(09): 44-48 . 百度学术
    10. 李玉伟,贾丹,高睿,高长龙,米洁翰,艾池. 煤岩复杂裂缝长期导流能力实验研究. 天然气与石油. 2017(01): 94-99+11-12 . 百度学术
    11. 陈德飞,孟祥娟,周玉,张慧芳,江春明. 岩石破坏后力学特性及其对天然气开采的影响. 断块油气田. 2016(03): 405-408 . 百度学术

    其他类型引用(8)

图(4)  /  表(5)
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  710
  • PDF下载量:  135
  • 被引次数: 19
出版历程
  • 收稿日期:  2018-08-04
  • 修回日期:  2019-11-27
  • 网络出版日期:  2020-01-15
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回