The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling
-
摘要:
极地的低温环境会使橡胶逐渐变硬甚至玻璃化从而丧失原有的弹性,易导致钻井泵、防喷器等关键钻井设备出现密封失效问题,影响正常生产并带来安全隐患。因此,需要对极地钻井关键设备所用橡胶密封材料进行优选。按照国家标准GB/T 528—2009和GB/T 7759.2—2014,在20~–50 ℃温度环境下对橡胶材料进行了单轴拉伸和压缩永久变形试验,将试验数据与多种常见超弹性本构模型进行拟合得到了模型参数,分析了这些本构模型在低温条件下的适用性;利用有限元分析软件ABAQUS,模拟分析了–45 ℃温度下处于工作状态的O形橡胶密封圈的密封性能,找出了设备在低温条件下容易发生密封失效的位置。分析认为,在低温、小变形条件下,Polynomial(N=2)模型和Ogden(N=3)模型能更准确地描述橡胶的力学性能;硅橡胶、气相胶、丁腈橡胶在极地环境(–45 ℃)下依然保持优越的密封性能,可以作为极地钻井关键设备用橡胶密封材料。低温下超弹性本构模型的分析和橡胶密封材料的优选,可为我国后续极地钻井提供理论指导与支持。
Abstract:The unique low temperature environment of polar drilling hardens rubber gradually to the point of even vitrifying it so it loses its original elasticity. This can easily cause the sealing failure of key drilling equipment, such as mud pump and BOP, which affects normal production and brings about potential safety risks. Therefore, it is necessary to optimize the rubber sealing materials used in the key equipment for polar drilling. According to the National Standards GB/T 528—2009 and GB/T 7759.2—2014, the rubber materials were subjected to uniaxial tension and compression permanent deformation tests at the temperature of 20~–50 °C, and the test data and the hyper-elastic constitutive models of several common rubbers were fitted to obtain the model parameters, so as to analyze the applicability of these constitutive models under low temperature conditions. The sealing performance of rubber O-ring at –45 °C was simulated and analyzed by using ABAQUS finite element software, and found the location of the seal failure which is easy to occur at low temperature. According to the analysis, Polynomial (N=2) model and Ogden (N=3) model can accurately describe the mechanical properties of rubber under low temperature and small deformation conditions. Silicone rubber, gas rubber and nitrile rubber can still maintain superior sealing performance under polar environments (–45 °C), so they can be used as the rubber sealing materials for key equipment of polar drilling. The analysis of rubber super-elastic constitutive model at low temperature and the optimization of rubber sealing materials can provide theoretical guidance and support for the future polar drilling of China.
-
-
表 1 不同温度下Polynomial(N=2)模型和Ogden(N=3)模型的模型参数
Table 1 Model parameters of Polynomial (N=2) model and Ogden (N=3) model at different temperatures
温度/℃ 橡胶类型 Polynomial(N=2)模型 Ogden(N=3)模型 模型参数 误差,% 模型参数 误差,% C10 C01 C20 C11 C02 α1 α2 α3 μ1 μ2 μ3 –30 硅橡胶 –9.867 12.232 0.78 –3.626 7.535 <7 1.309 –7.85 15.708 1.782 12.500 –25.000 <5 气相胶 –23.920 29.062 1.45 –7.082 16.190 <8 2.082 –17.40 34.994 0.427 12.500 –25.000 <7 丁腈橡胶 –32.820 39.365 2.52 –11.780 25.040 <6 3.763 –17.10 34.234 –6.964 12.500 –25.000 <5 –35 硅橡胶 –18.030 21.635 1.67 –7.767 14.980 <8 1.532 –10.60 21.250 1.682 12.500 –24.999 <6 气相胶 –26.580 31.910 2.23 –10.620 21.160 <9 2.182 –16.90 33.969 1.122 12.500 –25.000 <7 丁腈橡胶 –40.450 49.291 4.37 –20.020 36.850 <7 5.375 –21.70 43.498 1.888 12.500 –25.000 <6 –40 硅橡胶 –10.390 12.762 0.73 –3.538 7.770 <9 1.772 –4.61 9.218 –6.140 11.041 –22.082 <7 气相胶 –32.860 39.851 2.34 –11.130 23.760 <9 2.670 –21.30 42.773 1.123 11.351 –22.702 <8 丁腈橡胶 –60.650 74.301 5.17 –24.910 50.070 <8 7.804 –36.80 73.795 1.845 12.500 –24.999 <7 –45 硅橡胶 –27.550 32.531 2.10 –10.060 1.123 <10 1.123 –17.00 34.140 2.556 12.500 –25.000 <9 气相胶 –28.630 34.667 1.91 –9.485 20.820 <9 2.383 –20.60 41.372 1.502 12.461 –24.923 <8 丁腈橡胶 –93.300 112.320 7.38 –35.790 73.730 <9 7.952 –57.30 114.680 2.023 12.500 –25.000 <9 -
[1] USGS. Circum-Arctic resource appraisal: estimates of undiscovered oil and gas north of the Arctic Circle[R]. USGS Fact Sheet 2008-3049, 2008.
[2] 钟琳曼. “一带一路”背景下中俄油气合作机遇分析[J]. 江汉石油职工大学学报, 2017, 30(4): 86–89. doi: 10.3969/j.issn.1009-301X.2017.04.027 ZHONG Linman. Opportunities for Sino-Russia oil & gas cooperation at the background of the Belt and Road Initiative[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2017, 30(4): 86–89. doi: 10.3969/j.issn.1009-301X.2017.04.027
[3] 杨进, 路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术, 2017, 45(5): 1–7. YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
[4] 张文博. 阀门密封材料低温特性实验研究[D]. 成都: 西南石油大学, 2012. ZHANG Wenbo. Experimental study on low temperature characteristics of valve sealing materials[D]. Chengdu: Southwest Petroleum University, 2012.
[5] 张卫军, 杨向前, 刘洪亮, 等. 钻井泵阀盖金属密封失效原因与维修方法[J]. 石油矿场机械, 2008, 37(4): 86–87. doi: 10.3969/j.issn.1001-3482.2008.04.024 ZHANG Weijun, YANG Xiangqian, LIU Hongliang, et al. Failure cause of valve covers metal sealing of the drilling pump and its maintenance[J]. Oil Field Equipment, 2008, 37(4): 86–87. doi: 10.3969/j.issn.1001-3482.2008.04.024
[6] PUCCI E, SACCOMANDI G. A note on the agent model for rubber-like materials[J]. Rubber Chemistry and Technology, 2002, 75(5): 839–852. doi: 10.5254/1.3547687
[7] 严永明. 低温环境下橡胶材料超弹性本构模型探究[D]. 秦皇岛: 燕山大学, 2016. YAN Yongming. Study on hyperelastic constitutive modle of rubber materials under low temperture environment[D]. Qinhuangdao: Yanshan University, 2016.
[8] OGDEN R W. Nearly isotropic elastic deformations: application to rubberlike solids[J]. Journal of the Mechanics and Physics of Solids, 1978, 26(1): 37–57. doi: 10.1016/0022-5096(78)90012-1
[9] 王国权, 刘萌, 姚艳春, 等. 不同本构模型对橡胶制品有限元法适应性研究[J]. 力学与实践, 2013, 35(4): 40–47. doi: 10.6052/1000-0879-13-030 WANG Guoquan, LIU Meng, YAO Yanchun, et al. Application of different constitutive models in the nonlinear finite element method for rubber parts[J]. Mechanics in Engineering, 2013, 35(4): 40–47. doi: 10.6052/1000-0879-13-030
[10] 朱艳峰, 刘锋, 黄小清, 等. 橡胶材料的本构模型[J]. 橡胶工业, 2006, 53(2): 119–125. doi: 10.3969/j.issn.1000-890X.2006.02.014 ZHU Yanfeng, LIU Feng, HUANG Xiaoqing, et al. Constitutive model of rubber material[J]. Rubber industry, 2006, 53(2): 119–125. doi: 10.3969/j.issn.1000-890X.2006.02.014
[11] 于海富, 李凡珠, 杨海波, 等. 橡胶材料非线性高弹-粘弹性本构模型[J]. 橡胶工业, 2017, 64(12): 719–723. doi: 10.3969/j.issn.1000-890X.2017.12.003 YU Haifu, LI Fanzhu, YANG Haibo, et al. An nonlinear visco-hyperelastic constitutive model for carbon black filled natural rubber materials[J]. Rubber Industry, 2017, 64(12): 719–723. doi: 10.3969/j.issn.1000-890X.2017.12.003
[12] 钟亮, 赵俊利, 范社卫. 基于ABAQUS的O形密封圈密封性能仿真研究[J]. 煤矿机械, 2014, 35(3): 52–54. ZHONG Liang, ZHAO Junli, FAN Shewei. Simulation study on O-sealing sealing performance based on ABAQUS software[J]. Coal Mine Machinery, 2014, 35(3): 52–54.
[13] 谭晶, 杨卫民, 丁玉梅, 等. O形橡胶密封圈密封性能的有限元分析[J]. 润滑与密封, 2006, 31(9): 65–69. doi: 10.3969/j.issn.0254-0150.2006.09.020 TAN Jing, YANG Weimin, DING Yumei, et al. Finite element analysis of the sealing performance of O-ring seal structure[J]. Lubrication Engineering, 2006, 31(9): 65–69. doi: 10.3969/j.issn.0254-0150.2006.09.020
[14] 温纪宏, 陈国明, 畅元江, 等. 隔水管接头O形密封圈密封性能分析[J]. 石油机械, 2013, 41(1): 45–48. doi: 10.3969/j.issn.1001-4578.2013.01.012 WEN Jihong, CHEN Guoming, CHANG Yuanjiang, et al. Sealability analysis of the riser joint O-ring[J]. China Petroleum Machinery, 2013, 41(1): 45–48. doi: 10.3969/j.issn.1001-4578.2013.01.012
-
期刊类型引用(5)
1. 徐勤亮,陈景皓,高强,汪利伟,李忠利. 低温环境下海洋输油橡胶软管的扭转性能. 科学技术与工程. 2024(25): 10755-10761 . 百度学术
2. 王宇哲,张凯,杨甘生,李亚洲. 南极钻机的耐温材料和保温方式的优选. 钻探工程. 2023(S1): 82-89 . 百度学术
3. 孟广伟,骆青,钟声,孟广福. 石油化工管道接头橡胶防腐密封材料研究. 化学与粘合. 2022(04): 336-340 . 百度学术
4. 王宴滨,张辉,高德利,柯珂,刘文红. 低温环境下钻柱材料力学特性试验及强度设计. 石油钻探技术. 2021(03): 35-41 . 本站查看
5. 顾铖璋. 深冷环境下密封橡胶的力学性能研究. 橡胶科技. 2021(08): 375-381 . 百度学术
其他类型引用(4)