The Status of the Development of Graphene Applications in Petroleum Engineering
-
摘要:
石墨烯因具有独特的物理、化学性质而成为国内外研究热点,但在石油工程领域的应用研究还处于起步阶段。介绍了石墨烯及其衍生物的物理、化学特性,分析了石墨烯在油气探测技术、井下工具、井下流体、提高采收率技术和油水分离技术等方面的研究进展和应用情况,指出石墨烯在石油工程领域的发展需要进一步加强基础理论攻关、拓展石墨烯在石油工程领域的应用范围、加快石墨烯在油气行业的大规模推广应用,以引导油气行业新技术革命和促进我国油气资源的经济高效开发。这为促进石墨烯及其衍生物在石油工程领域的快速应用和发展具有借鉴意义。
Abstract:Graphene has become a hot research topic at home and abroad because of its unique physical and chemical properties, but its research and application in petroleum engineering are still in its infancy. In order to promote the rapid development and wide application of graphene and its derivatives in petroleum engineering, the excellent physical and chemical properties of graphene and its derivatives were introduced. An analysis of the current state of graphene research and application of graphene looked at five aspects: oil and gas exploration technology, downhole tools, downhole fluids, enhanced oil recovery (EOR) and oil-water separation technology. Finally, recommendations were made for additional research into graphene in petroleum engineering. It is recommended that the research on the key technologies mentioned above should be carried out, so as to further strengthen the basic theoretical research, and extend the application range of graphene in petroleum engineering, accelerate the large-scale popularization and application of graphene in the oil and gas industry, and provide reference for guiding the new technological revolution in the oil and gas industry and facilitating the economic and efficient development of China's oil and gas resources.
-
-
表 1 石墨烯与氧化石墨烯部分特性对比
Table 1 Comparison of partial characteristics of graphene and graphene oxide
特性 石墨烯 氧化石墨烯 碳氧比 2~4 杨氏模量/GPa 1 000 207.6±23.4 超高载流子迁移率/
(cm2·V–1·s–1)2×105 绝缘体 21 ℃下导热系数/
(W·m–1·K–1)4 840~5 300 取决于氧化程度,
最小可达8.8水溶性 不溶于水 可溶于水 生产成本 高 低 -
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
[2] 胡明明,赵高峰. 锂改性点缺陷石墨烯储氢性能的第一性原理研究[J]. 原子与分子物理学报, 2019, 36(3): 443–451. doi: 10.3969/j.issn.1000-0364.2019.03.013 HU Mingming, ZHAO Gaofeng. The hydrogen storage properties of lithium decorated point defect in graphene: a theoretical study[J]. Journal of Atomic and Molecular Physics, 2019, 36(3): 443–451. doi: 10.3969/j.issn.1000-0364.2019.03.013
[3] 武思蕊,李斌,李覃,等. 石墨烯基柔性薄膜复合材料及其功能化的研究进展[J]. 高分子材料科学与工程, 2019, 35(1): 176–182. WU Sirui, LI Bin, LI Qin, et al. Progress in graphene based flexible film composite and its functionalization[J]. Polymer Materials Science and Engineering, 2019, 35(1): 176–182.
[4] 史氾平. 基于半导体量子点和石墨烯量子点的功能性荧光纳米生物传感器的构建及在生物医学分析中的应用[D]. 长春: 吉林大学, 2017. SHI Fanping. Functionalized flurescencenano-biosensors based on semiconductor quantum dots and graphene quantum dots and their application in biomedical and analytical field [D]. Changchun: Jilin University, 2017.
[5] CHENG Qunfeng, WU Mengxi, LI Mingzhu, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide[J]. Angewandte Chemie(International Edition), 2013, 52(13): 3750–3755. doi: 10.1002/anie.201210166
[6] 闫昕,梁兰菊,张璋,等. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控[J]. 物理学报, 2018, 67(11): 253–264. YAN Xin, LIANG Lanju, ZHANG Zhang, et al. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial[J]. Acta Physica Sinica, 2018, 67(11): 253–264.
[7] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001 HU Wenrui. Geology-engineering integration: a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
[8] HOELSCHER K P, STEFANO G D, RILEY M, et al. Application of nanotechnology in drilling fluids[R]. SPE 157031, 2012.
[9] QIN Zhao, JUNG G S, KANG M J, et al. The mechanics and design of a lightweight three-dimensional graphene assembly[J]. Science Advances, 2017, 3(1): e1601536. doi: 10.1126/sciadv.1601536
[10] DREYER D R, PARK S J, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39: 228–240. doi: 10.1039/B917103G
[11] CRACIUN M F, RUSSO S, YAMAMOTO M, et al. Tuneable electronic properties in graphene[J]. NanoToday, 2011, 6(1): 42–60. doi: 10.1016/j.nantod.2010.12.001
[12] 罗海燕,周靖,张燕娟,等. 氧化石墨烯的制备及其对罗丹明B的吸附性能[J]. 化工新型材料, 2019, 47(1): 172–176. LUO Haiyan, ZHOU Jing, ZHANG Yanjuan, et al. Preparation of graphene oxide and its adsorption for rhodamine B[J]. New Chemical Materials, 2019, 47(1): 172–176.
[13] NEUBERGER N, ADIDHARMA H, FAN Maohong. Graphene: a review of applications in the petroleum industry[J]. Journal of Petroleum Science and Engineering, 2018, 167: 152–159. doi: 10.1016/j.petrol.2018.04.016
[14] BHONGALE S G, GAZDA J, SAMSON E M. Graphene barriers on waveguides, WO/2016/068952 [P]. 2016-05-06.
[15] LI Cheng, GAO Xiangyang, GUO Tingting, et al. Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nano thick graphene diaphragm[J]. Measurement Science and Technology, 2015, 26(8): 122–130.
[16] MA Jun, JIN Wei, HO H L. High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Optics Letters, 2012, 37(13): 2493–2495. doi: 10.1364/OL.37.002493
[17] MA Jun, XUAN Haifeng, HO H L, et al. Fiber-Optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm[J]. Photonics Technology Letters, 2013, 25(10): 932–935. doi: 10.1109/LPT.2013.2256343
[18] GENORIO B, PENG Zhiwei, LU Wei, et al. Synthesis of dispersible ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in a magnetic field[J]. ACS Nano, 2012, 6(11): 10396–10404. doi: 10.1021/nn304509c
[19] CHAKRABORTY S, DIGIOVANNI A A, AGRAWAL G, et al. Graphene-coated diamond particles and compositions and intermediate structures comprising same, US 201113283021 [P]. 2011-10-27.
[20] KESHAVAN M K, ZHANG Youhe, SHEN Yuelin, et al. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance, US 201414507590 [P]. 2014-10-06.
[21] Ocsial Company. Drilling speed increased by 20%: yet another upgrade in the oil & gas sector made possible by graphene nanotubes[OL]. [2019-01-14].https://ocsial.com/en/news/340/.
[22] JAMROZIK A. Graphene and graphene oxide in the oil and gas industry[J]. AGH Drilling, Oil, Gas, 2017, 34(3): 731–744.
[23] 宣扬,蒋官澄,黎凌,等. 高性能纳米降滤失剂氧化石墨烯的研制与评价[J]. 石油学报, 2013, 34(5): 1010–1016. doi: 10.7623/syxb201305025 XUAN Yang, JIANG Guancheng, LI Ling, et al. Preparation and evaluation of nano-graphene oxide as a high-performance fluid loss additive[J]. Acta Petrolei Sinica, 2013, 34(5): 1010–1016. doi: 10.7623/syxb201305025
[24] 王琴,王健,吕春祥,等. 氧化石墨烯水泥浆体流变性能的定量化研究[J]. 新型炭材料, 2016, 31(6): 574–583. WANG Qin, WANG Jian, LYU Chunxiang, et al. Rheological behavior of fresh cement pastes with a graphene oxide additive[J]. New Carbon Materials, 2016, 31(6): 574–583.
[25] AFTAB A, ISMAIL A R, IBUPOTO Z H. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet[J]. Egyptian Journal of Petroleum, 2017, 26(2): 291–299. doi: 10.1016/j.ejpe.2016.05.004
[26] 赵磊,蔡振兵,张祖川,等. 石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为[J]. 材料研究学报, 2016, 30(1): 57–62. doi: 10.11901/1005.3093.2015.082 ZHAO Lei, CAI Zhenbing, ZHANG Zuchuan, et al. Tribological properties of graphene as effective lubricant additive in oil on textured bronze surface[J]. Chinese Journal of Materials Research, 2016, 30(1): 57–62. doi: 10.11901/1005.3093.2015.082
[27] TAHA N M, LEE S. Nano graphene application improving drilling fluids performance [R]. IPTC-18539, 2015.
[28] LUO Dan, WANG Feng, ZHU Jingyi, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration[J]. PANS, 2016, 113(28): 7711–7716. doi: 10.1073/pnas.1608135113
[29] 袁路路.石墨烯负载镍、钴纳米复合材料的制备及其在稠油催化降粘中的应用研究[D].开封: 河南大学, 2017. YUAN Lulu. Preparation of graphene-supported nickel-cobalt nano-composites and their application in viscosity reduction of heavy oil[D]. Kaifeng: Henan University, 2017.
[30] ELSHAWAF M. Investigation of graphene oxide nanoparticles effect on heavy oil viscosity [R]. SPE 194037, 2018.
[31] 贾海鹏,苏勋家,侯根良,等. 石墨烯基磁性纳米复合材料的制备与微波吸收性能研究进展[J]. 材料工程, 2013, 41(5): 89–93, 100. doi: 10.3969/j.issn.1001-4381.2013.05.018 JIA Haipeng, SU Xunjia, HOU Genliang, et al. Progress in fabrication and microwave absorption capacity of graphene-based magnetic nanocomposites[J]. Journal of Materials Engineering, 2013, 41(5): 89–93, 100. doi: 10.3969/j.issn.1001-4381.2013.05.018
[32] YANG Sudong, CHEN Lin, WANG Chunchun, et al. Surface roughness induced superhydrophobicity of graphene foam for oil-water separation[J]. Journal of Colloid and Interface Science, 2017, 508: 254–262. doi: 10.1016/j.jcis.2017.08.061
[33] 邱丽娟,张颖,刘帅卓,等. 超疏水、高强度石墨烯油水分离材料的制备及应用[J]. 高等学校化学学报, 2018, 39(12): 2758–2766. doi: 10.7503/cjcu20180332 QIU Lijuan, ZHANG Ying, LIU Shuaizhuo, et al. Preparation and application of superhydrophobic and robust graphene composites oil/water separation material[J]. Chemical Journal of Chinese Universities, 2018, 39(12): 2758–2766. doi: 10.7503/cjcu20180332
-
期刊类型引用(34)
1. 纪照生,袁国栋,晁文学,蒋金宝,白旺东. 塔里木盆地超深小井眼定向钻井提速提效关键技术. 石油钻探技术. 2024(04): 8-14 . 本站查看
2. 刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术. 断块油气田. 2023(04): 692-697 . 百度学术
3. 邱春阳,张翔宇,朱福军,秦涛,王智,温守云. 超深水平井钾胺盐抗高温防塌钻井液技术. 精细石油化工进展. 2023(04): 1-5 . 百度学术
4. 王龙,方静,董秀民,王金树,方俊伟,耿云鹏,张建军,徐同台. 储层友好型钻井液用超微四氧化三锰. 钻井液与完井液. 2023(04): 467-474 . 百度学术
5. 伍兴东. 顺北油田特深井裸眼坍塌处理工艺技术与应用. 内蒙古石油化工. 2022(04): 88-90 . 百度学术
6. 李科,赵怀珍,李秀灵,周飞. 抗高温高性能水基钻井液及其在顺北801X井的应用. 钻井液与完井液. 2022(03): 279-284 . 百度学术
7. 刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 . 本站查看
8. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
9. 王萍,樊佳勇,韩成福,王亮,屈展,黄海,顾甜利. 苏里格气田区小井眼二开水平井优化设计. 科学技术与工程. 2022(28): 12349-12354 . 百度学术
10. 张建龙,李瑞刚,温炜,张洪宁,殷子横. 提高MWD仪器在特深小井眼水平井测量可靠性的方法. 石油钻采工艺. 2022(04): 430-435+443 . 百度学术
11. 杨静,涂福洪,霍如军,陶瑞东,尚子博,郭亮. 苏里格南区块小井眼钻井关键技术. 石油钻探技术. 2021(01): 22-27 . 本站查看
12. 邱春阳,张翔宇,赵红香,王雪晨,张海青,陈二丁. 顺北区块深层井壁稳定钻井液技术. 天然气勘探与开发. 2021(02): 81-86 . 百度学术
13. 赵建军,崔晓杰,曹海涛,赵晨熙. 高频液力扭转冲击钻井提速工具设计与分析. 机床与液压. 2021(14): 84-88 . 百度学术
14. 孔丽姝,路清华,何毓新,顾忆,孙永革. 塔里木盆地顺北地区深部油藏轻烃地球化学特征及其指示意义. 地球化学. 2021(03): 261-272 . 百度学术
15. 杨军义,王西江. 顺北区块火成岩侵入体井壁稳定分析及对策. 内蒙古石油化工. 2021(10): 54-56+86 . 百度学术
16. 翟科军,于洋,刘景涛,白彬珍. 顺北油气田火成岩侵入体覆盖区超深井优快钻井技术. 石油钻探技术. 2020(02): 1-5 . 本站查看
17. 孙明光. 顺北油田超深小井眼水平井定向钻井技术. 钻采工艺. 2020(02): 19-22+1-2 . 百度学术
18. 刘彪,张俊,王居贺,李文霞,李少安. 顺北油田含侵入岩区域超深井安全高效钻井技术. 石油钻采工艺. 2020(02): 138-142 . 百度学术
19. 王建云,杨晓波,王鹏,范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术. 石油钻探技术. 2020(03): 8-15 . 本站查看
20. 于洋,李双贵,高德利,李光乔. 顺北5-5H超深?120.65 mm小井眼水平井钻井技术. 石油钻采工艺. 2020(03): 276-281 . 百度学术
21. 刘彪,许瑞,王居贺,闫铁,孙文峰,邵阳. 基于改进的主成分分析法的钻头优选评价模型. 石油机械. 2020(09): 8-14 . 百度学术
22. 唐洪林,孙荣华. 永3-侧平1深层小井眼侧钻水平井钻井技术. 科技创新与应用. 2019(06): 147-148+150 . 百度学术
23. 乔浩,殷会鹏,袁君. 小井眼快优钻井关键技术研究. 化工管理. 2019(10): 77 . 百度学术
24. 刘彪,潘丽娟,王圣明,李小爱,李双贵. 顺北油气田超深井井身结构系列优化及应用. 石油钻采工艺. 2019(02): 130-136 . 百度学术
25. 康鹏,李琰,戴永鹏,贾利春,寇明. 哈拉哈塘Ф104.8 mm小井眼超深定向井难点分析及改进方向. 钻采工艺. 2019(03): 122-124 . 百度学术
26. 邹书强,张红卫,伊尔齐木,李翔. 顺北一区超深井窄间隙小尾管固井技术研究. 石油钻探技术. 2019(06): 60-66 . 本站查看
27. 赵建军,崔晓杰,赵晨熙,胡亮,尹慧博,马兰荣. 高频液力扭力冲击器设计与试验研究. 石油化工应用. 2018(02): 5-10 . 百度学术
28. 李亚南,于占淼,晁文学,孔华,王安广. 顺北评2H超深小井眼侧钻水平井技术. 石油钻采工艺. 2018(02): 169-173 . 百度学术
29. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
30. 陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 . 百度学术
31. 张晓广. 伊拉克米桑油田深井水平井钻井技术. 探矿工程(岩土钻掘工程). 2018(11): 24-28 . 百度学术
32. 张俊,徐珊,张进双,孙连忠,徐江. 巴楚隆起夏河区块风险探井钻井优化设计. 断块油气田. 2017(03): 417-420 . 百度学术
33. 赵志国,白彬珍,何世明,刘彪. 顺北油田超深井优快钻井技术. 石油钻探技术. 2017(06): 8-13 . 本站查看
34. 查春青,柳贡慧,李军,李玉梅,席岩,连威. 复合冲击钻具的研制及现场试验. 石油钻探技术. 2017(01): 57-61 . 本站查看
其他类型引用(5)