川深1井超高温高压尾管固井技术

罗翰, 何世明, 罗德明

罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094
引用本文: 罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094
LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094
Citation: LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094

川深1井超高温高压尾管固井技术

基金项目: 国家科技重大专项“高压低渗油气藏固井完井技术”(编号:2016ZX05021005)部分研究内容
详细信息
    作者简介:

    罗翰(1992—),男,四川德阳人,2016年毕业于西南石油大学石油工程专业,在读硕士研究生,主要从事水泥环完整性研究工作。E-mail:luohan@live.cn

  • 中图分类号: TE256+.3

Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1

  • 摘要:

    针对川深1井四开井段超高温高压地层尾管固井长效密封的需求,通过增大硅粉加量和合理匹配硅粉粒径抑制水泥石强度衰退,优选高温苯丙胶乳、纳米液硅等改善水泥浆的防气窜能力、力学性能、稳定性等,设计了适用于超高温高压地层的高密度防气窜水泥浆。其性能为:密度2.05 kg/L,防气窜系数SPN值小于0.43,气窜模拟未见气窜现象发生;水泥石在180 ℃下养护14 d抗压强度达到了41 MPa,未见强度衰退现象;水泥石气测渗透率0.008 1 mD,单轴弹性模量为7.54 GPa。川深1井四开井段采用高密度防气窜水泥浆,并采取“替净”、“压稳”和“封严”等固井技术措施,有效封隔了高压气层,为后期作业提供了良好的井筒环境。这表明,超高温高压地层通过优选合适的水泥浆,并采取相应的技术措施,可以解决超高温高压地层的固井技术难点,提高固井质量。

    Abstract:

    The Well Chuanshen-1 encountered an ultra-high temperature and high pressure (ultra-HTHP) formation in the fourth drilling section. In order to ensure the long-term sealing of setting cement in this section, it is preferable to restrain the strength deterioration of setting cement by increasing the silicon powder dosage and by reasonably matching the particle sizes of silicon powder. In addition, the high-temperature styrene-acrylic latex and the nano-liquid silicon have been selected to improve the anti-gas channeling ability, mechanical properties and stability of cement slurry. For this purpose, a high-density anti-gas channeling cement slurry suitable for ultra-HTHP formation was designed, with a density of 2.05 kg/L and an anti-gas channeling coefficient SPN lower than 0.43. In this case, no gas channeling was observed in gas channeling simulation; the compressive strength of set cement reached 41 MPa at 180 °C for 14 d, and no strength deterioration of cement stone was found; the gas measurement permeability of the set cement was 0.008 1 mD, and the uniaxial elastic modulus of set cement was 7.54 GPa. The high-density anti-gas channeling cement slurry was applied in the fourth drilling section of Well Chuanshen-1, and the cementing measures such as "thoroughly displacement", "stable well killing" and "sealing securely" were adopted, which effectively isolated the high-pressure gas layers and provided a good wellbore environment for the successive operations. This process proved that the  ultra-high temperature and high pressure formation could be smoothly cemented by using the suitable cement slurry and taking proper technical measures, and an in following those procedures, it could be possible in the future to assure high cementing quality.

  • 川深1井位于四川省阆中市,是中国石化部署在四川盆地川中隆起北部斜坡带柏垭鼻状构造的一口风险探井,主探震旦系灯影组地层含油气情况,兼探寒武系龙王庙组地层含油气情况,完钻井深8 420.00 m。该井四开采用ϕ241.3 mm钻头钻进,在6 880.00~8 060.00 m井段下入ϕ206.4 mm+ϕ193.7 mm套管,尾管下至井深8 059.50 m,尾管悬挂器位于井深6 527.20 m处。该开次钻遇二叠系、志留系、奥陶系、寒武系地层,累计钻遇14个气层,气层压力系数1.77~1.89,钻井液密度1.97 kg/L,井底静止温度172 ℃。由于地层的储集空间为裂缝和溶洞,井筒内流体与缝洞中气体的置换作用强,液柱压力不能有效压稳气层,钻进过程中油气显示活跃。该井四开井段固井作业属于典型的超深井超高温高压固井,须封住裸眼井段内的多套高压地层,为五开低压地层(压力系数为1.10~1.20)钻进及后期测试提供合格的井筒条件[1]

    高压气井固井作业时,由于水泥浆胶凝失重,环空液柱压力降低,不能压稳气层,气体会窜入水泥环与套管或水泥环与井壁之间的间隙,造成层间互窜甚至窜入井口,导致水泥环密封失效。而且在高温(>110 ℃)环境下,水泥石的强度会衰退,造成水泥石渗透率增大,导致水泥环失去密封能力。为防止气窜,国内外主要采取应用加入胶乳、纳米液硅等防气窜剂的防气窜水泥浆的方法;为防止水泥石强度衰退,主要采用在水泥中添加硅粉的方法。但对于高温高压气井,这些方法均不能有效解决气窜问题。因此,根据川深1井四开固井需求,将高温苯丙胶乳与纳米液硅结合,通过优化设计超高温高密度防气窜水泥浆,并优化固井技术措施,实现了四开超高温高压地层的有效封固,为五开低压地层钻进及后期测试提供了合格的井筒条件。

    1)高压气层防气窜难度大。该井四开累计钻遇14个气层,气层显示活跃。对7 507.00~7 511.00 m、7 661.00~7 666.36 m和7 731.00~7 757.00 m井段钻遇的气层进行了测试,气体上窜速度最大达到458 m/h,最大全烃值99.7%,进出口钻井液密度差0.12 kg/L;裸眼段气层压力最大达到142 MPa,气层压力梯度达到1.89 MPa/100m,潜气窜因子GFR为10.8,属于固井后环空气窜高危井。

    2)重叠井段气窜风险高。该井四开固井环空返速设计为1.0 m/s,而重叠段内浆体的环空返速仅为0.49 m/s,顶替效率低,环空会残留钻井液,重叠段的固井质量通常都较差。同时,重叠段为领浆封固,为确保固井施工安全,将领浆稠化时间设计为500 min,顶部强度发展缓慢,气窜风险高。上层套管鞋以下1.50,10.00和70.00 m位置处存在3个气层,重叠段防气窜难度极大。

    3)缝洞型地层气液置换效应强。气测显示明显的气层位于茅口组、洗象池群、陡坡寺组、龙王庙组、沧浪铺组、仙女洞组等地层,均为碳酸盐岩地层,裂缝和溶洞较发育,气液置换作用强,依靠液柱压力不能阻止气体进入环空。

    1)超高温条件下高分子水泥添加剂性能会降低。超高温环境下降滤失剂、分散剂、胶乳、缓凝剂等有机高分子水泥添加剂的性能降低,水泥浆的防气窜能力、降滤失性能、高温分散性、稳定性等都得不到有效控制。以降滤失剂为例,国内目前使用的超高温降滤失剂均为AMPS共聚物,当前广泛使用的AMPS降滤失剂高温老化前后(老化条件为在180 ℃条件下养护3 h)的特性黏数测试结果见表1。由表1可知,该类降滤失剂高温老化后的特性黏数损失率均超过25.79%,这说明高分子降滤失剂在高温条件下均会发生高温降解,从而影响水泥浆的性能。

    表  1  AMPS降滤失剂高温老化后的特性黏数损失率
    Table  1.  Intrinsic viscosity loss rate of AMPS fluid loss additive after high temperature aging
    降滤失剂特性黏数特性黏数损失率,%
    老化前老化后
    BS1006.2762.82473.58
    HS-J5.3812.97862.70
    SUP102L2.1241.77625.79
    下载: 导出CSV 
    | 显示表格

    2)水泥石需具备长期封固能力。根据API的规定,在温度达到110 ℃时,需在G级油井水泥浆中加入30%~40%的硅粉抑制水泥石强度衰退,但常规加砂水泥浆加入硅粉后并不能满足高温固井需求。室内研究表明:常规加砂水泥石在180 ℃条件下养护14 d后,用扫描电镜可以观察到针状、片状或者粒状产物,胶结物不致密(见图1);高温养护后其强度急剧衰退,降至5 MPa左右;孔隙度和渗透率增大,渗透率可增至10 mD,导致水泥环失去密封能力。同时,常规高温高密度水泥石的弹性模量达到12 GPa以上,表现为硬脆性,难以满足五开钻进及后期射孔、测试等作业对水泥环密封完整性的需求,因此,该井四开固井,要求水泥石具备一定的弹韧性[2]

    图  1  常规加砂水泥石高温养护后的SEM结果
    Figure  1.  SEM results of set cement by conventional sand-adding after high temperature curing

    该井四开所用钻井液的密度为1.97 kg/L,黏度为56 s,动切力为10 Pa,且钻井液中混有3%的原油,固相含量高达34%,难以将井壁上的油膜冲洗干净;钻井液与隔离液的密度差仅为0.05 kg/L,井深7 300.00 m以深井径扩大率仅有1.05%,ϕ206.4 mm小接箍套管无法安装扶正器,套管居中度低,提高顶替效率难度大[3]

    通过研究不同温度下水泥石强度的发展规律,优化硅粉粒径和加量来抑制水泥石强度在高温下的衰退。针对单一防气窜剂不能有效解决高压气窜的问题,将胶乳和液硅进行复配使用,利用胶乳成膜和液硅堵塞的防气窜特性,增强水泥浆防气窜能力,提高水泥石的弹性,降低其渗透率。

    当井底温度高于150 ℃时,常规加砂水泥石的强度快速衰退,孔隙结构变大,水化产物为以板块状C2SH与CH为主的混合物[3]。解决常规加砂水泥石强度高温快速衰退的主要方法是将硅粉加量增大到50%~60%,并优选粗硅粉和细硅粉的配比,进一步降低水泥石的钙硅(Ca/Si)比,消耗CH与高温下生成的C2SH。选取80目(粗)与200目(细)2种硅粉,将加入不同量硅粉(粗硅粉和细硅粉配比)常规加砂水泥浆形成的水泥石在180 ℃下进行养护,测其在不同养护时间下的抗压强度,结果见图2。由图2可知:加入50%粗硅粉和60%粗硅粉形成的水泥石,在养护到3 d时抗压强度达到最大,随后抗压强度出现衰退,在养护到14 d时抗压强度分别为22.2和26.7 MPa,衰退幅度分别为38.0%和32.4%;80目与200目硅粉复配可以显著抑制水泥石强度的衰退,30%粗硅粉与30%细硅粉复配,养护14 d时抗压强度为34.2 MPa,衰退幅度为4.5%。因此,选用30%粗硅粉与30%细硅粉复配。粗细硅粉复配增大了二氧化硅的比表面积,在二氧化硅加量相同的条件下可以消耗更多的C2SH与CH,其水化产物结构致密(见图3)。

    图  2  硅粉加量及粗细硅粉配比对水泥石强度发展的影响
    Figure  2.  Effect of silicon powder dosage and coarse-fine silicon powders ratio on the strength development of set cement
    图  3  添加30%粗硅粉和30%细硅粉加砂水泥石在180 ℃下养护14 d时的SEM结果
    Figure  3.  SEM results of set cement with adding 30% coarse silicon powder vs 30% fine silicon powder at 180 °C for 14 d

    1)添加胶乳改善水泥浆性能。a. 胶乳能提高水泥浆的防气窜能力。选用玻璃化温度90 ℃的苯丙胶乳提高水泥浆的高温防气窜能力,胶乳粒径为300~400 nm,其具有“成膜”防气窜和“堵塞”防气窜的作用。正压差作用下胶乳颗粒在水泥颗粒间聚集成膜,膜覆盖在滤饼表面可以阻止气窜的发生。同时,胶乳也具有颗粒堵塞作用,可降低水泥石的渗透率。b. 胶乳能改善水泥石的力学性能。胶乳颗粒具有弹性,胶乳水泥浆固化后可以显著降低水泥石的弹性模量。c. 胶乳能进一步降低水泥浆的滤失量、提高水泥浆的高温沉降稳定性[48]

    2)纳米液硅改善水泥浆的性能[9]。纳米液硅中含有45%活性纳米二氧化硅微球,粒径10~300 nm,中值粒径160 nm。a. 提高水泥浆的防气窜能力。纳米二氧化硅“硬球体”和胶乳“软球体”填充在水泥颗粒孔隙里,交织在一起,可以增强其堵塞能力,提高水泥浆的高温防气窜能力。b. 提高水泥石高温强度的稳定性。纳米液硅中二氧化硅的比表面积达到了25 m2/g,可以显著提高水泥石高温强度的稳定性。

    依据超高温高密度水泥浆设计方法及性能需求,优选抗高温的降滤失剂(高温黏度损失率小于10%)和缓凝剂(抗温200 ℃,耐温差60 ℃)等,通过优化形成了超高温高密度水泥浆配方:水泥+30.0%硅粉(80目)+30.0%硅粉(200目)+30.0%铁矿粉+2.5%降滤失剂(SCF200L)+10.0%苯丙胶乳(SCJR)+10.0%纳米液硅(SCLS)+x%缓凝剂(SCR–3)+1.0%抑泡剂(SCXP)+48.0%水。其基本性能为:密度2.05 kg/L;稠化时间可调,缓凝剂加量为7.5%和5.0%时,在155 ℃、155 MPa条件下的稠化时间分别为571 和293 min,稠化过渡时间1 min,均为直角稠化;滤失量38 mL;流动度21 cm;流性指数0.75,稠度系数1.28 mPa·sn;自由液0 mL;无沉降;72 h顶部强度15.3 MPa;水泥石在180 ℃条件下养护14 d时的强度可达41 MPa,未见强度衰退。

    1)防气窜性能。根据稠化时间、稠化过渡时间和API滤失量计算出超高温高密度水泥浆的防气窜系数SPN值为0.20~0.43。使用7150型防气窜模拟分析仪评价了超高温高密度水泥浆的防气窜能力,结果见图4。由图4可知,当水泥浆处于“失重”(胶凝)状态时,未见气窜现象发生。超高温高密度水泥浆形成的水泥石在180 ℃下养护7 d时的气测渗透率为0.008 1 mD,仅为常规水泥石的3%,说明苯丙胶乳和纳米液硅结合防气窜作用显著。

    图  4  水泥浆防气窜模拟试验结果
    Figure  4.  Anti-gas channeling simulation test results of cement slurry

    2)水泥石力学性能评价[1011]。超高温高密度水泥浆形成的水泥石在180 ℃、21 MPa条件下养护7 d,单轴弹性模量为7.54 GPa,较常规水泥石降低了30%。这是由于超高温高密度水泥浆中的胶乳为有机颗粒,其在高温下具有较好的弹韧性;纳米液硅中的纳米二氧化硅颗粒填充在水泥颗粒间,通过参与水化反应,生成CSH凝胶来修补水泥石中的微观缺陷(微裂缝等),改善了水泥石的力学性能,提高了水泥石的弹性形变能力,有利于在井下温度、压力条件下及压裂施工时,保持水泥环的完整性,提高环空密封能力。

    针对该井四开固井防窜难度大、顶替效率低的技术难点,采用了“替净”、“压稳”和“封严”等技术措施来提高固井质量。

    1)“替净”技术措施包括:a. 使用性能良好的低黏低切先导浆,占裸眼段长度2 000.00 m;b. 优化浆柱流变性能,控制隔离液屈服值大于钻井液的屈服值、小于水泥浆的屈服值;c. 设计隔离液占裸眼段长度1 500.00 m,冲洗时间25 min;d. 使用洗油型隔离液,隔离液润湿点30%,提高界面水润湿性,增强界面胶结能力。

    2)“压稳”技术措施包括:a. 使用分段压稳设计模型,以确保压稳气层,压稳系数设计为1.05;b. 为确保施工过程中全程压稳,采用加重冲洗液,其密度为2.0 kg/L;c. 环空加压5 MPa候凝。3)“封严”技术措施是使用带顶部封隔器的尾管悬挂器,在水泥浆顶替到位后,坐封顶部封隔器,切断气体上窜的通道。

    注入30 m3密度1.97 kg/L的低黏低切先导浆;注入20 m3密度2.02 kg/L的加重隔离液;注入密度2.03 kg/L的领浆和尾浆,注入量分别为22和18 m3;下钻杆胶塞,替入1 m3密度2.02 kg/L的压塞液,排量0.50 m3/min;替入26 m3密度1.97 kg/L的井浆,排量1.53 m3/min;替入14 m3密度2.02 kg/L的保护液,排量0.88 m3/min;替入57 m3密度1.97 kg/L的井浆,排量1.50 m3/min;用泵车替入2.8 m3密度1.00 kg/L的清水,排量0.70 m3/min;泄压,放回水断流;下压500 kN,坐封顶部封隔器;憋压5 MPa,验封正常;起钻15柱,正循环洗井一周;关井憋压5 MPa候凝。

    候凝72 h后,通井后检测井深7 273.00 m以深固井质量,第一界面优良率94.8%,第二界面优良率为96.4%,整体固井质量达到良好。在五开钻进过程中,未发生气窜等异常现象,满足了超深井超高温高压地层的长效封固需求。

    1)根据胶乳水泥浆防气窜、加入硅粉控制水泥石强度衰退的思路,通过优化形成了适用于超高温高压地层固井的高密度防气窜水泥浆。该水泥浆加入30%的80目硅粉和30%的200目硅粉控制水泥石强度高温衰退,再加入10%纳米液硅改善水泥石高温强度的稳定性,形成的水泥石在180 ℃下养护14 d强度达到了41 MPa,未见强度衰退现象。

    2)超高温高压高密度防气窜水泥浆利用高温苯丙胶乳“软球体”和纳米液硅“硬球体”提高水泥浆高温高压下的防气窜能力,防气窜模拟试验未见气窜现象,形成水泥石的气测渗透率仅为0.008 1 mD,单轴弹性模量为7.54 GPa。

    3)川深1井四开采用超高温高压高密度防气窜水泥浆,采取“替净”、“压稳”和“封严”等技术措施,实现了对四开井眼内多个气层的有效封隔,为后期钻井、测试等作业提供了安全的井筒条件。

  • 图  1   常规加砂水泥石高温养护后的SEM结果

    Figure  1.   SEM results of set cement by conventional sand-adding after high temperature curing

    图  2   硅粉加量及粗细硅粉配比对水泥石强度发展的影响

    Figure  2.   Effect of silicon powder dosage and coarse-fine silicon powders ratio on the strength development of set cement

    图  3   添加30%粗硅粉和30%细硅粉加砂水泥石在180 ℃下养护14 d时的SEM结果

    Figure  3.   SEM results of set cement with adding 30% coarse silicon powder vs 30% fine silicon powder at 180 °C for 14 d

    图  4   水泥浆防气窜模拟试验结果

    Figure  4.   Anti-gas channeling simulation test results of cement slurry

    表  1   AMPS降滤失剂高温老化后的特性黏数损失率

    Table  1   Intrinsic viscosity loss rate of AMPS fluid loss additive after high temperature aging

    降滤失剂特性黏数特性黏数损失率,%
    老化前老化后
    BS1006.2762.82473.58
    HS-J5.3812.97862.70
    SUP102L2.1241.77625.79
    下载: 导出CSV
  • [1] 牛新明,张克坚,丁士东,等. 川东北地区高压防气窜固井技术[J]. 石油钻探技术, 2008, 36(3): 10–15. doi: 10.3969/j.issn.1001-0890.2008.03.003

    NIU Xinming, ZHANG Kejian, DING Shidong, et al. Gas migration prevention cementing technologies in northeast Sichuan Area[J]. Petroleum Drilling Techniques, 2008, 36(3): 10–15. doi: 10.3969/j.issn.1001-0890.2008.03.003

    [2] 刘威,熊良宵,潘海峰. 高温循环作用下水泥砂浆的力学性能研究[J]. 硅酸盐通报, 2016, 35(7): 2314–2317.

    LIU Wei, XIONG Liangxiao, PAN Haifeng. Mechanical properties of cement mortar under high temperature cycles[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2314–2317.

    [3] 周仕明,李根生,方春飞. 元坝地区ϕ146.1 mm尾管固井技术难点与对策[J]. 石油钻探技术, 2010, 38(4): 41–44.

    ZHOU Shiming, LI Gensheng, FANG Chunfei. Difficulties and countermeasures for ϕ146.1 mm liner cementing in Yuanba Area[J]. Petroleum Drilling Techniques, 2010, 38(4): 41–44.

    [4] 路飞飞,李斐,田娜娟,等. 复合加砂抗高温防衰退水泥浆体系[J]. 钻井液与完井液, 2017, 34(4): 85–89. doi: 10.3969/j.issn.1001-5620.2017.04.016

    LU Feifei, LI Fei, TIAN Najuan, et al. High temperature anti strength retrogression cement slurry with compounded silica powder[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 85–89. doi: 10.3969/j.issn.1001-5620.2017.04.016

    [5] 严思明,严圣东,吴亚楠,等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺, 2018, 40(2): 174–178.

    YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2): 174–178.

    [6] 高元,桑来玉,杨广国,等. 胶乳纳米液硅高温防气窜水泥浆体系[J]. 钻井液与完井液, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014

    GAO Yuan, SANG Laiyu, YANG Guangguo, et al. Cement slurry treated with latex Nano liquid silica anti-gas-migration agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014

    [7] 程小伟,刘开强,李早元,等. 油井水泥浆液–固态演变的结构与性能[J]. 石油学报, 2016, 37(10): 1287–1292. doi: 10.7623/syxb201610009

    CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry during liquid-solid transition[J]. Acta Petrolei Sinica, 2016, 37(10): 1287–1292. doi: 10.7623/syxb201610009

    [8] 陆沛青,桑来玉,谢少艾,等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术, 2019, 47(1): 52–58.

    LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latex cement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52–58.

    [9] 符军放,张浩,项先忠,等. 硅溶胶在固井水泥浆中的应用性能研究[J]. 西安石油大学学报(自然科学版), 2013, 28(3): 78–82. doi: 10.3969/j.issn.1673-064X.2013.03.017

    FU Junfang, ZHANG Hao, XIANG Xianzhong, et al. Study on the performance of colloidal silica for cementing slurry[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2013, 28(3): 78–82. doi: 10.3969/j.issn.1673-064X.2013.03.017

    [10] 李早元,郭小阳,罗发强,等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    [11] 郭进忠,罗霄,华苏东,等. 抗冲击防窜水泥浆体系性能研究[J]. 钻井液与完井液, 2010, 27(4): 59–61. doi: 10.3969/j.issn.1001-5620.2010.04.020

    GUO Jinzhong, LUO Xiao, HUA Sudong, et al. Study on tough and anti-channeling cement slurry[J]. Drilling Fluid & Completion Fluid, 2010, 27(4): 59–61. doi: 10.3969/j.issn.1001-5620.2010.04.020

  • 期刊类型引用(7)

    1. 佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示. 天然气工业. 2024(01): 40-48 . 百度学术
    2. 张福铭,肖伟,朱思佳,石礼岗,赵军. 超高温高密度防腐防窜水泥浆. 钻井液与完井液. 2024(04): 506-514 . 百度学术
    3. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 . 百度学术
    4. 刘书杰,武治强,吴怡,侯铎,张智. 深水深井高温高压水泥石固化养护及制备方法研究. 石油钻采工艺. 2022(03): 291-296 . 百度学术
    5. 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 . 百度学术
    6. 李成全,何世明,张平. 磨溪-高石梯构造超深定向井固井水泥浆技术. 石油与天然气化工. 2020(02): 73-79 . 百度学术
    7. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看

    其他类型引用(3)

图(4)  /  表(1)
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  791
  • PDF下载量:  101
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-02-19
  • 修回日期:  2019-07-07
  • 网络出版日期:  2019-07-23
  • 刊出日期:  2019-06-30

目录

/

返回文章
返回