Study on Vertical Differential Velocity and Transverse Scope of Nitrogen Injection in Carbonate Reservoirs with Fractures and Vugs in the Tahe Oilfield
-
摘要:
塔河油田溶洞型碳酸盐岩油藏的溶洞发育规模及形态不确定性大,非均质性强,注水开发效果越来越差。为了给注气开发提供依据,分析了该类油藏注入氮气的垂向分异速度和横向波及范围。根据力学关系,建立了溶洞条件下氮气垂向分异速度解析式;采用3D打印技术制作了物理试验模型,基于物理模拟试验,验证了数值模拟的正确性;结合数值模拟,研究了氮气注入速度、原油黏度、油水界面和气水比对氮气在溶洞型油藏中横向展布的影响。研究结果表明,气体横向波及范围会随着注气速度增大、原油黏度降低、油水界面升高而增大,但气水比对气体横向波及范围的影响无明显规律。
Abstract:The fractured and vuggy carbonate reservoirs of the Tahe Oilfield suffer a deteriorating water flooding development due to the large development scale and pattern uncertainty of fractures and vugs, coupled with a high degree of heterogeneity. In order to provide references for gas injection development, the vertical differentiation velocity after nitrogen injection in those reservoirs and its effect were analyzed. Based on the mechanical relationship, the vertical differentiation velocity analytical equation of nitrogen was established under the conditions of fractures and vugs. A physical test model was constructed from 3D printing technology, and the verification of numerical simulation was based on the physical simulation test. The influences of nitrogen injection rate, crude oil viscosity, oil-water interface, and gas-water ratio on the lateral distribution of nitrogen in reservoirs with fractures and vugs were studied in combination with numerical simulation. The study results suggested that lateral sweepage area of gas will increase with the increase of injection rate, along with a decrease of crude oil viscosity and the elevation of oil-water interface. However, the effect of gas-water ratio on the lateral sweepage area of gas is irregular.
-
-
-
[1] 李阳,康志江,薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669–678. LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theory and practice of carbonate reservoir development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669–678.
[2] 金强,田飞. 塔河油田岩溶型碳酸盐岩溶洞结构研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 15–21. doi: 10.3969/j.issn.1673-5005.2013.05.003 JIN Qiang, TIAN Fei. Investigation of fracture-cave constructions of karcted cabonate reservoirs of Ordovician in Tahe Oilfield, Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 15–21. doi: 10.3969/j.issn.1673-5005.2013.05.003
[3] 唐洪,,谢琳,苏波,等. 塔中奥陶系碳酸盐岩储层溶洞特征[J]. 中国石油大学学报(自然科学版), 2013, 37(2): 7–13. doi: 10.3969/j.issn.1673-5005.2013.02.002 TANG Hong, XIE Lin, SU Bo, et al. Fracture and vug character of Ordovician carbonate reservoir in Tazhong Oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(2): 7–13. doi: 10.3969/j.issn.1673-5005.2013.02.002
[4] 李东. 塔河溶洞型超稠油油藏注气提高采收率实验研究[D]. 成都: 西南石油大学, 2016. LI Dong. Experimental study on gas injection to enhance oil recovery for fractured-cavity ultra-heavy oil reservoir of Tahe Oilfield[D]. Chengdu: Southwest Petroleum University, 2016.
[5] 张旭,刘建仪,孙良田,等. 克拉玛依油田五2西克下组T2K1块注气提高采收率实验研究[J]. 特种油气藏, 2004, 11(6): 95–97. doi: 10.3969/j.issn.1006-6535.2004.06.031 ZHANG Xu, LIU Jianyi, SUN Liangtian, et al. Experimental study of improving recovery factor by gas injection in T2K1 Block, Kexia Formation, Wu2xi, Karamay Oilfield[J]. Special Oil & Gas Reservoirs, 2004, 11(6): 95–97. doi: 10.3969/j.issn.1006-6535.2004.06.031
[6] 郭平,罗玉琼,何建华,等. 注水开发油田进行注气开发的可行性研究[J]. 西南石油学院学报, 2003, 25(4): 37–40. doi: 10.3863/j.issn.1674-5086.2003.04.011 GUO Ping, LUO Yuqiong, HE Jianhua, et al. A feasibility study of gas injection for oil reservoirs after waterflooding[J]. Journal of Southwest Petroleum Institute, 2003, 25(4): 37–40. doi: 10.3863/j.issn.1674-5086.2003.04.011
[7] 惠健,刘学利,汪洋,等. 塔河油田溶洞型油藏注气替油机理研究[J]. 钻采工艺, 2013, 36(2): 55–57. doi: 10.3969/J.ISSN.1006-768X.2013.02.16 HUI Jian, LIU Xueli, WANG Yang, et al. Mechanism research on gas injection to displace the oil remaining in fracttured-vuggy reservoirs of Tahe Oilfield[J]. Drilling & Production Technology, 2013, 36(2): 55–57. doi: 10.3969/J.ISSN.1006-768X.2013.02.16
[8] 刘柳. 垂直上升管中气泡动力学特性实验研究[D].长沙: 中南大学, 2013. LIU Liu. Experimental study of bubble dynamic characteristics in vertical upward pipe[D]. Changsha: Central South University, 2013.
[9] 鞠花,陈刚,李国栋. 静水中气泡上升运动特性的数值模拟研究[J]. 西安理工大学学报, 2011, 27(3): 344–349. doi: 10.3969/j.issn.1006-4710.2011.03.019 JU Hua, CHEN Gang, LI Guodong. Research on numerical simulation of motion behaviors of single bubble rising in still water[J]. Journal of Xi 'an University of Technology, 2011, 27(3): 344–349. doi: 10.3969/j.issn.1006-4710.2011.03.019
[10] 蒋炎坤. 水下排气气泡运动特性及其数值模拟研究[J]. 华中科技大学学报(自然科学版), 2004, 32(10): 49–50. doi: 10.3321/j.issn:1671-4512.2004.10.017 JIANG Yankun. Movement characteristic of exhaust bubble in water and its numerical simulation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2004, 32(10): 49–50. doi: 10.3321/j.issn:1671-4512.2004.10.017
-
期刊类型引用(11)
1. 翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 . 百度学术
2. 卢聪,李秋月,郭建春. 分布式光纤传感技术在水力压裂中的研究进展. 油气藏评价与开发. 2024(04): 618-628 . 百度学术
3. 叶志权,肖雷,王丽峰,薛浩楠,王晗. 小井眼连续油管多簇射孔填砂分段压裂技术——以百口泉油田百1断块X井为例. 油气井测试. 2023(01): 33-37 . 百度学术
4. 李娜. 水平井分段多簇压裂技术影响因素. 化学工程与装备. 2023(07): 97-98 . 百度学术
5. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 . 百度学术
6. 张文康. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石化技术. 2022(12): 139-141 . 百度学术
7. 邹立萍,邹昌柏. 关于水平井压裂工艺技术现状及展望. 当代化工研究. 2021(10): 7-8 . 百度学术
8. 苗娟,黄兵,谢力,汤明. 高钢级套管段铣工具优化及性能评价. 特种油气藏. 2021(02): 163-170 . 百度学术
9. 李杉杉,孙虎,张冕,池晓明,刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石油钻探技术. 2021(04): 92-98 . 本站查看
10. 谢慧华,马青印,辛红伟,田相元,孔春岩,贺亚杰. 文留油田盐间油藏深部双层套管开窗侧钻技术. 断块油气田. 2021(05): 706-710 . 百度学术
11. 李海涛,罗红文,向雨行,安树杰,李颖,蒋贝贝,谢斌,辛野. DTS/DAS技术在水平井压裂监测中的应用现状与展望. 新疆石油天然气. 2021(04): 62-73 . 百度学术
其他类型引用(6)