New Progress on PCDS Precise Pressure Management Drilling Technology
-
摘要:
为解决钻进复杂地层时普遍存在的井涌、漏失、坍塌和卡钻等井下故障,特别是“溢漏同存”窄安全密度窗口地层安全钻进的问题,研制了PCDS精细控压钻井系列装备,形成了欠/近/过平衡精细控压钻井技术,以及9种工况、4种控制模式、13种应急转换的精细控压钻井工艺,并在不同类型的复杂地层进行了应用,解决了“溢漏同存”窄安全密度窗口地层安全钻进的难题,提高了油气勘探发现率,大幅延长了水平井水平段长度,提高了单井产量。详细介绍了PCDS精细控压钻井装备的发展过程及最新进展,分析了PCDS精细控压钻井技术的现场应用效果,指出了控压钻井技术将向高效一体化方向发展,应用领域也将不断拓宽,其与信息化、智能化结合,将形成智能井筒安全控制钻井技术,为未来智能钻井技术奠定基础。
Abstract:In order to solve the downhole problems of well kicks, leakage, collapse, stuck pipe string, etc., all of which are common in drilling complex formations, especially in the case of safe drilling in narrow safety density window formation characterized by the co-existence of overflow and leakage, the CNPC Engineering Technology Research Institute has developed the PCDS precise pressure management drilling equipment series. In addition, they formed under/near/overbalanced precise pressure management drilling technologies, together with pressure management drilling processes that are suitable for nine kinds of working conditions, four kinds of control modes, and thirteen kinds of emergency conversion modes. Those technologies have been applied in various complex strata and have effectively solved the above-mentioned problems. The new breakthrough techniques and technologies have dramatically improved the discovery rates in oil and gas exploration, and have dramatically extended the length of horizontal section in horizontal wells. In addition, they have improved the production of single wells. This paper introduces the development processes and latest progresses of PCDS precise pressure management drilling equipment in details, and analyzes the field application effect of PCDS fine precise pressure management drilling technology. It is pointed out that this technology has a goal of achieving high-efficiency integration, and the locations where the technologies are applied will be continuously expanded. By combining this technology with data science and artificial intelligence, it is expected that the next steop will involve intelligent wellbore safety control drilling technology which will lay the foundation for future intelligent drilling technologies.
-
作为非常规能源的页岩气,因资源量巨大得到了广泛关注[1],目前主要采用经过大型体积压裂的水平井开发。页岩气储层为泥页岩地层,层理发育,钻井过程中易水化膨胀,发生因井壁失稳引发的卡钻、埋钻等井下故障,严重时可导致井眼报废,造成巨大的经济损失。页岩气水平井井壁失稳问题是制约页岩气安全高效开发的技术瓶颈之一。国内外的专家和学者对此开展了大量的试验和理论研究,并取得了丰富的成果。J. C. Jaeger等人[2]率先提出了岩石弱面强度失效准则;刘向君等人[3-5]在此基础上,基于连续介质力学与应力坐标系转换理论,建立了考虑弱面影响的坍塌压力预测模型,分析了弱面稳定性和产状对井壁稳定性的影响;洪国斌等人[6-7]结合斜井状态下的井周应力模型与弱面破坏准则,建立了大斜度井地层坍塌压力模型,分析了影响井壁稳定性的因素。这些研究仅考虑了弱面对井壁稳定性的影响,未考虑水化作用对井壁稳定性的影响。温航等人[8]建立了同时考虑层理产状和层理面弱化的坍塌压力模型,分析了影响坍塌压力分布的因素;马天寿、陈平等人[9-12]结合弱面强度准则,建立了层理性页岩水平井井壁稳定性分析模型,定量分析了层理产状和含水量对水平井坍塌压力的影响。虽然这些研究都同时考虑了层理面和水化作用对泥页岩地层稳定性的影响,但仅考虑了水化作用对岩石本体和弱面力学参数的弱化效应,鲜有考虑水化膨胀应力对井壁稳定性的影响。因此,笔者以弹性力学和岩石力学等理论为基础,既考虑层理面的影响,也考虑水化作用对岩石本体和层理面的强度弱化效应以及水化膨胀应力作用的影响,建立了力化耦合作用下层理性页岩气水平井井壁坍塌压力预测模型,研究了层理性页岩气水平井井壁失稳机理,分析了井眼轨迹、水化应变、层理面产状和钻井时间等因素对坍塌压力的影响规律。
1. 层理页岩水平井坍塌压力预测模型
使用水基钻井液钻进页岩地层时,水基钻井液滤液与页岩地层发生水化反应,导致其强度降低,引发井壁失稳。笔者基于以下假设建立层理性页岩水平井坍塌压力预测模型:
1)不仅考虑水化导致的水化应变对井壁稳定性的影响,还考虑含水量对岩石力学参数的影响;
2)地层岩石为非均质岩石且具有各向同性;
3)岩石除有一组平行的、强度较低的弱面(裂缝)外,其他方向上地层岩石的强度是相同的;
4)岩石变形较小且为线弹性变形。
1.1 考虑水化应变作用的井周应力
水化作用下的井周围岩应力应变(水化应变)平衡方程为:
dσrrdr+σrr−σθθr=0 (1) 式中:σrr和σθθ分别为井眼圆柱坐标系下的径向应力和周向应力,Pa;r为半径,m。
井壁上的径向应力等于井内钻井液液柱压力,即内边界条件为σrr|r=R = pm。距井壁无穷远处的径向应力等于原地应力,即外边界条件为σrr|r→∞ = S。
将内外边界条件代入应力应变平衡方程,最终得到应力应变平衡方程的通解(即径向位移u)为:
u=Ar+B/r (2) 其中A=(1−2ν)(1+ν)E(σxx+σyy)2 (3) B=(1+ν)2E[(σxx+σyy)2−pm]R2 (4) 式中:σxx和σyy分别为井眼直角坐标系下x轴和y轴方向的主应力,Pa;u为径向位移,m;pm为井内有效液柱压力,Pa;E为地层含水量为fw时的弹性模量,Pa;
ν 为地层含水量为fw时的泊松比;Pa;R为井眼半径,m。根据轴对称井筒的平面应变几何方程,可求得水化作用产生的径向和周向水化应变:
{εrr=dudr=A−Br2εθθ=ur=A+Br2 (5) 式中:εrr为径向应变;εθθ为切向应变。
垂向水化应变需通过相关的试验获取,笔者直接采用C. H. Yew等人[13]的室内测试结果:
εv=K1Δfw+K2Δfw2 (6) 式中:K1=0.070 8;K2=11.08;εv为垂向水化应变;Δfw为含水量的增量,Δfw = fw–fwi;fwi为原始地层含水量。
最终,得到层理性页岩在平面二维空间圆柱坐标系内的水化应力为:
{σhyrr=E(1−2ν)(1+ν)[(1−ν)εrr+νεθθ−(m+ν)εv]σhyθθ=E(1−2ν)(1+ν)[(1−ν)εθθ+νεrr−(m+ν)εv]σhyzz=E(1−2ν)(1+ν)[νεrr+νεθθ−(1−ν+2mν)εv] (7) 式中:
σhyrr ,σhyθθ 和σhyzz 分别为考虑层理面时井眼圆柱坐标系下的径向应力、周向应力和轴向应力,Pa;m为各向异性比值。1.2 原地应力产生的井周应力
通过坐标转换得到井周柱坐标系下的主应力和切应力为:
{σrr=σxx+σyy2(1−R2r2)+σxx−σyy2(1+3R4r4−4R2r2)cos2θ+τxy(1+3R4r4−4R2r2)sin2θ+R2r2pmσθθ=σxx+σyy2(1+R2r2)−σxx−σyy2(1+3R4r4)cos2θ−τxy(1+3R4r4)sin2θ−R2r2pmσzz=σzz−2v(σxx−σyy)(Rr)2cos2θτrθ=[(σyy−σxx)sin2θ2+τxycos2θ](1−3R4r4+2R2r2)τθz=τyz(1+R2r2)cosθ−τxz(1+R2r2)sinθτrz=τxz(1−R2r2)cosθ+τyz(1−R2r2)sinθ (8) 式中:
σzz 为井眼圆柱坐标系下的轴向应力,Pa;τrθ ,τθz 和τrz 为井眼圆柱坐标系下3个平面上的切向应力,Pa;θ 为沿井眼周向的方位角,(°)。1.3 井眼总有效应力
井眼总有效应力由2部分组成,一部分是泥页岩水化应变产生的水化应力,另一部分是由原地应力产生的应力,计算公式为:
{σtrr=σrr+σhyrrσtθθ=σθθ+σhyθθσtzz=σzz+σhyzzτtrθ=τrθτtqz=τθzτtrz=τrz (9) 当r=R时,即可得到井壁上的总有效应力:
{σtrr=E(1−2v)(1+v)[(1−v)εrr+vεθθ−(m+v)εv]+pm−ηppσtθθ=E(1−2v)(1+v)[(1−v)εθθ+νεrr−(m+v)εv]+σxx(1−2cosθ)+σyy(1+2cos2θ)−4τxysin2θ−pm−ηppσtzz=E(1−2v)(1+v)[vεrr+vεθθ−(1−v+2mv)εv]+σzz−v[2(σxx−τxy)cos2θ+4τxysin2θ]−ηppτtθz=2τyzcosθ−2τxzsinθτtrθ=0τtrz=0 (10) 式中:
σtrr ,σtθθ ,σtzz ,τtrθ ,τtθz 和τtrz 为考虑水化应力作用后的井眼总有效应力分量,Pa;η为有效应力系数;pp为地层孔隙压力,Pa。由式(8)可知,
σtrr 是其中一个主应力,即σr=σtrr 。另外2个主应力的计算公式为:{σa=σtzz+σtθθ2+√(σtzz−σtθθ2)2+(τtθz)2σb=σtzz+σtθθ2−√(σtzz−σtθθ2)2+(τtθz)2 (11) 则最大和最小主应力为:
{σ1=max (12) 式中:
{\sigma _{\rm{a}}} ,{\sigma _{\rm{b}}} 和{\sigma _{\rm{r}}} 为井壁上的主应力,Pa;{\sigma _1} 和{\sigma _3} 分别为最大、最小主应力,Pa。通过以上模型可以求得页岩气水平井井壁上的最大主应力和最小主应力,再结合Mohr-Coulomb弱面强度准则即可求得坍塌压力。
1.4 坍塌压力的确定
层理性地层具有一组近似平行的层理面,层理面的强度低于岩石本体强度,又被称之为弱面。J. C. Jaeger在1960年提出了单一弱面强度理论,该理论是对Mohr-Coulomb破坏准则的推广,可描述具有一条或一组平行弱面的各向同性岩体的剪切破坏(见图1)。笔者以单一弱面强度理论作为井壁失稳的判定依据。
{\sigma _{\rm{1}}} - {\sigma _{\rm{3}}} = \frac{{2\left( {{C_{\rm{w}}} + {\sigma _{\rm{3}}}\tan {\varphi _{\rm{w}}}} \right)}}{{\left( {1 - \tan {\varphi _{\rm{w}}}\cot \beta } \right)\sin 2\beta }} (13) \beta = {\rm{arc}}\cos \frac{{{{n}} \cdot {{N}}}}{{\left| {{n}} \right| \cdot \left| {{N}} \right|}} (14) {{n}} = \sin {i_{\rm{w}}}\cos {\alpha _{\rm{w}}}{{i}} + \sin {i_{\rm{w}} }\sin {\alpha _{\rm{w}} }{{j}} + \cos {\alpha _{\rm{w}} }{{k}} (15) {{N}} = \left\{ \begin{array}{l} \sin \gamma {{j}} + \cos \gamma {{k}} \\ - \cos \gamma {{j}} + \sin \gamma {{k}} \\ \end{array} \right.\begin{array}{*{20}{c}} {}&\begin{array}{l} {\sigma _{_{zz}}^{\rm{t}} \geqslant \sigma _{\theta \theta }^{\rm{t}}} \\ {\sigma _{_{zz}}^{\rm{t}} < \sigma _{\theta \theta }^{\rm{t}}} \\ \end{array} \end{array} (16) \gamma = \left\{ \begin{array}{l} \dfrac{{\text{π}}}{4} \\ 0.5\arctan \left| {\dfrac{{2\tau _{_{\theta z}}^{\rm{t}}}}{{\sigma _{\theta \theta }^{\rm{t}} - \sigma _{_{zz}}^{\rm{t}}}}} \right| \\ \end{array} \right.\begin{array}{*{20}{c}} {}&\begin{array}{l} {\sigma _{_{zz}}^{\rm{t}} = \sigma _{_{\theta \theta }}^{\rm{t}}} \\ {\sigma _{_{zz}}^{\rm{t}} \ne \sigma _{_{\theta \theta }}^{\rm{t}}} \\ \end{array} \end{array} (17) 弱面破坏时β的下限(β1)和上限(β2)分别为:
\left\{ \begin{array}{l} {\beta _{\rm{1}}} = 0.5{\varphi _{\rm{w}}} + 0.5\arcsin \left[{\dfrac{{({\sigma _{\rm{1}}} + {\sigma _{\rm{3}}} + 2{C_{\rm{w}}}\cot {\varphi _{\rm{w}}})\sin {\varphi _{\rm{w}}}}}{{{\sigma _{\rm{1}}} - {\sigma _{\rm{3}}}}}} \right] \\ {\beta _{\rm{2}}} = \dfrac{{\text{π}}}{2} + {\varphi _{\rm{w}}} - {\beta _{\rm{1}}} \\ \end{array} \right. (18) β1和β2分别为弱面破坏时β的下限和上限。由摩尔应力圆可知:当β1≤β≤β2时,弱面破坏造成井壁失稳;当0<β<β1或β2<β<π/2时,弱面稳定,此时岩石本体破坏造成井壁失稳。判定岩石本体破坏的依据为:
{\sigma _{\rm{1}}} - {\sigma _{\rm{3}}} = \frac{{2\cos \varphi }}{{1 - \sin \varphi }} + {\sigma _{\rm{3}}}\frac{{1 + \sin \varphi }}{{1 - \sin \varphi }} (19) 式中:β为弱面法线与最大主应力夹角,(°);Cw为层理面黏聚力,MPa;
{\varphi _{\rm{w}}} 为层理面内摩擦角,(°);αw为层理面倾向,(°);iw为层理面倾角,(°)。黄荣樽等人[14]利用泥页岩岩心不同含水量下的力学参数试验数据求得了泥页岩力学特性参数随含水量的变化规律:
\left\{ \begin{array}{l} E = {E_{\rm{0}}}{{\rm{e}}^{ - 11\sqrt {{f_{\rm{w}}} - {f_{\rm{w}}}_{\rm{i}}} }} \\ \nu = {\nu _{\rm{0}}} + 1.3{f_{\rm{w}}} \\ C = {C_{\rm{0}}} - 58.8\left( {{f_{\rm{w}}} - {f_{\rm{w}}}_{\rm{i}}} \right) \\ \varphi = {\varphi _{\rm{0}}} - 187.5\left( {{f_{\rm{w}}} - {f_{\rm{w}}}_{\rm{i}}} \right) \\ \end{array} \right. (20) 式中:E0为初始弹性模量,Pa;v0为初始泊松比;C0为原始黏聚力,Pa;
{\varphi _0} 为原始内摩擦角,(°);\nu 为地层含水量为{f_{\rm{w}}} 时的泊松比;C为地层含水量为{f_{\rm{w}}} 时的黏聚力,Pa;\varphi 为地层含水量为{f_{\rm{w}}} 时的内摩擦角,(°)。2. 坍塌压力模型求解
笔者利用Matlab软件编制了利用迭代法求取坍塌压力(用坍塌压力当量密度表示,下文简称为当量密度)的程序,用于预测力化耦合条件下考虑层理面影响的页岩气水平井坍塌压力,计算程序的求解流程如图2所示。
图3为考虑与不考虑水化应变时坍塌压力当量密度计算结果。由图3可知:在当前计算条件下,无论是否考虑水化应变,沿最小水平主应力方向(方位角90°)钻进,且井斜角相对较大(>60°)时,井壁最易失稳(见图3(a)和图3(b));考虑水化应变时的当量密度普遍大于不考虑水化应变时的当量密度(见图3(c)和图3(d)),其最大差值大于1.72 kg/L,当方位角相对较大(>180°)时,考虑与不考虑水化应变的当量密度差相对较大。
综上所述,使用水基钻井液钻进层理性泥页岩地层时,水化应变对坍塌压力的影响相对较大,在设计钻井液密度时,不仅要考虑水化作用对岩石力学特性参数的影响,还需要同时考虑水化应变(或水化应力)对坍塌压力的影响。
3. 力化耦合下层理性页岩井壁失稳影响因素分析
笔者采用以下基础参数系统分析地应力机制、井斜角、方位角、弱面产状、地层岩石力学参数和水化特征等影响力化耦合作用下层理性页岩地层坍塌压力的规律:井眼半径为0.108 m,井深为2 420.0 m,最大水平主应力为76.30 MPa,最大水平主应力方位角为0°,最小水平主应力为55.14 MPa,垂向主应力为61.96 MPa,地层孔隙压力为21.48 MPa,初始泊松比为0.2,有效应力系数为0.8,原始地层含水量为0.034,井壁含水量为0.054,岩石本体原始黏聚力为16.61 MPa,岩石本体原始内摩擦角为32.76°,层理面黏聚力为5.28 MPa,层理面内摩擦角为20.81°,层理面倾向为135°,层理面倾角为0°,地层各向异性比值为0.71,井斜角为0°~90°,井眼方位角为0°~360°。
图4为不同条件下的坍塌压力当量密度计算结果。由图4可知:在无弱面和水化作用时,定向井或水平井沿最大水平主应力方向钻进最有利于井壁稳定(见图4(a));仅考虑弱面影响时,井斜角越小越有利于井壁稳定(见图4(b));当仅考虑水化作用时,坍塌压力当量密度随井斜角和方位角的变化趋势与不考虑弱面和水化作用时几乎相同(见图4(c));与原始条件相比,当存在弱面或水化作用时,会使坍塌压力当量密度大幅度升高,井壁易失稳;当同时考虑弱面和水化作用时,沿最小水平主应力方向钻进,且井斜角在40°左右时,井壁最易失稳(见图4(d))。
3.1 地应力机制对坍塌压力的影响
在保持3个主地应力不变的情况下,采用3种不同的地应力机制(σH>σV>σh,σH>σh>σV和σV>σH>σh),分析了坍塌压力当量密度随井斜角和方位角的变化规律,结果如图5所示。由图5可知:无论在哪种地应力机制下,直井段的井壁最稳定,当井斜角在45°附近时,井壁最易失稳;在正断层地应力机制下(σV>σH>σh),井壁最稳定,在走滑断层地应力机制下(σH>σV>σh)和逆断层地应力机制下(σH>σh>σV)井壁最易失稳;在走滑断层地应力机制下和逆断层地应力机制下,当方位角为270°~90°时,井壁最易失稳,在正断层地应力机制下,方位角为60°~240°时,井壁最易失稳。
3.2 层理面产状对坍塌压力的影响
分析不同井斜角和方位角下,坍塌压力当量密度随弱面倾角和倾向的变化规律,结果见图6。由图6可知:无论井斜角和方位角如何变化,当弱面倾角和倾向与井斜角和方位角一致时,最有利于井壁稳定;当i=45°,且弱面倾角在90°附近和弱面倾向在45°、135°、225°和315°附近时井壁最易失稳;当i=90°,且弱面倾向与井眼垂直时,井壁最易失稳。
3.3 含水量对坍塌压力的影响
分析了不同含水量下坍塌压力当量密度随井斜角和方位角的变化规律,结果见图7。由图7可知:井壁最稳定区域和易失稳区域几乎不随含水量增大而变化,原因可能是:在给定计算条件下,含水量增大对岩石力学参数的弱化效应大于水化膨胀应力的变化,从而导致井壁最稳定区域和最易失稳区域几乎不随含水量变化而变化;不同井斜角和方位角所对应的坍塌压力当量密度随含水量增大而升高,原因可能是:水化应力和水化作用对岩石力学参数的弱化程度均随含水量增大而增强,最终导致坍塌压力当量密度随含水量增大而升高。
3.4 水化时间对坍塌压力的影响
图8为坍塌压力当量密度随水化时间和径向距离变化的分析结果。由图8可知:近井壁处的坍塌压力当量密度随水化时间增长而升高;当水化时间相同时,坍塌压力当量密度随离井壁径向距离增大而降低;井壁易失稳区域随着水化时间增长而增大;井壁上的坍塌压力当量密度不随水化时间变化而变化,因为井壁上的含水量不随水化时间变化而变化。
4. 结论及建议
1)考虑层理面效应后,坍塌压力当量密度大幅升高;沿层理面方位钻进时,井壁最稳定。
2)无论在哪种地应力机制下,直井段(沿层里面钻井)的井壁最稳定,当井斜角在45°附近时,井壁最易失稳。
3)含水量变化不会对最稳定区域或易失稳区域产生影响;在相同条件下,坍塌压力当量密度随含水量增大而升高。
4)近井壁地层的坍塌压力当量密度随水化时间增长而升高;当水化时间相同时,坍塌压力当量密度随距井壁径向距离增大而降低。
5)由于使用水基钻井液钻进层理性页岩地层时,水化应变对坍塌压力当量密度的影响较大,因此,建议在设计钻井液密度时,既要考虑水化作用对岩石力学参数的影响,同时也要考虑水化膨胀应力的影响。在钻井过程中要严格控制钻井液的滤失量,提高钻井液的抑制性,以降低地层含水量,减小水化应变,确保井壁稳定。
-
表 1 精细控压钻井技术使用范围推荐
Table 1 Recommended scope of fine pressure management drilling technology
序号 地层特点 工程要求 推荐的控压钻井技术 1 窄安全密度窗口地层 控压精度高 井底恒压控压钻井技术 2 压力敏感地层 实时调整井底压力 快速井底压力监控钻井技术 3 易漏地层 流量补偿 流量补偿控压钻井技术 4 低渗地层 气体监测和压力控制 欠平衡控压钻井技术 5 含有毒有害气体地层 气体监测和压力精确控制 微过平衡控压钻井技术 6 宽安全密度窗口地层 井口自动节流 井口自动节流控压钻井技术 -
[1] 周英操. 精细控压钻井技术及其应用[M]. 北京: 石油工业出版社, 2018. ZHOU Yingyao. Accurate managed pressure drilling technology and application[M]. Beijing: Petroleum Industry Press, 2018.
[2] 周英操, 崔猛, 查永进. 控压钻井技术探讨与展望[J]. 石油钻探技术, 2008, 36(4): 1–4. doi: 10.3969/j.issn.1001-0890.2008.04.001 ZHOU Yingcao, CUI Meng, ZHA Yongjin. Discussion and prospect of managed pressure drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 1–4. doi: 10.3969/j.issn.1001-0890.2008.04.001
[3] 刘伟, 王瑛, 郭庆丰, 等. 精细控压钻井技术创新与实践[J]. 石油科技论坛, 2016(4): 32–37. LIU Wei, WANG Ying, GUO Qingfeng, et al. Innovation and application of accurate managed pressure drilling technology[J]. Oil Forum, 2016(4): 32–37.
[4] 刘伟, 周英操, 王瑛, 等. 国产精细控压钻井系列化装备研究与应用[J]. 石油机械, 2017, 45(5): 28–32. LIU Wei, ZHOU Yingyang, WANG Ying, et al. Domestic accurate managed pressure drilling series equipment technolog[J]. China Petroleum Machinery, 2017, 45(5): 28–32.
[5] 周英操,杨雄文,方世良,等. 精细控压钻井系统研制与现场试[J]. 石油钻探技术, 2011, 39(4): 7–12. ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Development and field test of PCDS-I precise managed pressure drilling system [J]. Petroleum Drilling Techniques, 2011, 39(4): 7–12.
[6] 周英操, 杨雄文, 方世良, 等. 国产精细控压钻井系统在蓬莱9井试验与效果分析[J]. 石油钻采工艺, 2011, 33(6): 19–22. doi: 10.3969/j.issn.1000-7393.2011.06.005 ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Field test and analysis on effect of auto-controlled pressure drilling system in the Well Penglai 9[J]. Oil Drilling & Production Technology, 2011, 33(6): 19–22. doi: 10.3969/j.issn.1000-7393.2011.06.005
[7] LIU Wei, SHI Lin, ZHOU Yingcao, et al. The successuful application of a new-style managed pressure drilling (MPD) equipement and technology in Well Penglai 9 of Sichuan & Chongqing District[R]. SPE 155703, 2012.
[8] 刘伟, 周英操, 段永贤, 等. 国产精细控压钻井技术与装备的研发及应用效果评价[J]. 石油钻采工艺, 2014, 36(4): 34–37. LIU Wei, ZHOU Yingcao, DUAN Yongxian, et al. Development of domestic fine controlled pressure drilling technology and equipment and evaluation on their application effec[J]. Oil Drilling & Production Technology, 2014, 36(4): 34–37.
[9] LIU Wei, SHI Lin, ZHOU Yingcao, et al. Development and application of pressure control drilling system (PCDS) for drilling complex problem[R]. IPTC 17143, 2013.
[10] 付加胜, 刘伟, 周英操, 等. 单通道控压钻井装备压力控制方法与应用[J]. 石油机械, 2017, 45(1): 6–9. FU Jiasheng, LIU Wei, ZHOU Yingcao, et al. Pressure control method and application of managed pressure drilling equipment with single channel[J]. China Petroleum Machinery, 2017, 45(1): 6–9.
[11] LIU Wei. Real-time integrated optimized drilling technology for deep carbonate formation[R]. SPE 177630, 2015.
[12] 黄熠,杨进,施山山,等. 控压钻井技术在海上超高温高压井中的应用[J]. 石油钻采工艺, 2018, 40(6): 699–705. HUANG Yi, YANG Jin, SHI Shanshan, et al. Applications of MPD technology in offshore ultra-HTHP wells[J]. Oil Drilling & Production Technology, 2018, 40(6): 699–705.
[13] 匡立新,刘卫东,甘新星,等. 涪陵平桥南区块页岩气水平井钻井提速潜力分析[J]. 石油钻探技术 , 2018, 46(4): 16–22. KUANG Lixin, LIU Weidong, GAN Xinxing, et al. Acceleration potentials analysis of shale gas horizontal well drilling in the South Pingqiao Block of Fuling[J]. Petroleum Drilling Techniques, 2018, 46(4): 16–22.
[14] 于海叶,苗智瑜,陈永明,等. 控压钻井技术在漏涌同存地层的应用[J]. 断块油气田, 2015, 22(5): 660–663. YU Haiye, MIAO Zhiyu, CHEN Yongming, et al. Application of MPD technique in loss and kick coexistence formation[J]. Fault-Block Oil & Gas Field, 2015, 22(5): 660–663.
[15] 王沫,杜欢,伊尔齐木,等. 顺南井区优快钻井技术[J]. 石油钻探技术, 2015, 43(1): 50–54. WANG Mo, DU Huan, EERQM, et al. Optimal and fast drilling technology for Shunnan Block[J]. Petroleum Drilling Techniques, 2015, 43(1): 50–54.
[16] 宋巍,李永杰,靳鹏菠,等. 裂缝性储层控压钻井技术及应用[J]. 断块油气田, 2013, 20(3): 362–365. SONG Wei, LI Yongjie, JIN Pengbo, et al. MPD technology on fractured reservoir and its application[J]. Fault-Block Oil & Gas Field, 2013, 20(3): 362–365.
[17] 彭明佳,刘伟,王瑛,等. 精细控压钻井重浆帽设计及压力控制方法[J]. 石油钻采工艺, 2015, 37(4): 16–19. PENG Mingjia, LIU Wei, WANG Ying, et al. Design of heavy grout and pressure control method for fine pressure-control drilling[J]. Oil Drilling & Production Technology, 2015, 37(4): 16–19.
[18] ROSTAMI S A, MRRAJABI M, STOIAN E, et al. Managed pressure cementing in HPHT utilizing realtime pressure estimation and control software: a case study[R]. OTC 27919, 2017.
[19] DE LA C S A, DA SILVA T P, PATRICK B. MPC successful application in deepwater exploration: case study[R]. OTC 28139, 2017.
[20] RUBIANTO I, PRASETA A E, DETRIZIO P, et al. An effective method in determining pore pressure by controlling bottomhole pressure while drilling narrow window wells in the Gulf of Thailand[R]. SPE 186877, 2017.
[21] JOHNSON A, PICCOLO B, PINKSTONE H, et al. Augmenting deepwater well control with managed pressure drilling equipment[R]. SPE 186331, 2017.
[22] LEITE C R A, LONGHIN G A, WALDMANN A A, et al. Artifical intelligence strategy minimizes lost circulation non-productive time in Brazilian deep water pre-salt[R]. OTC 28034, 2017.
-
期刊类型引用(25)
1. 杨斌,张浩,杨建,李越,曾港彬,刘国庆,杨珊. 基于裂缝亚临界扩展理论的页岩吸水起裂微观力学机制. 天然气工业. 2025(02): 105-113 . 百度学术
2. 杨坤. 塔西南山前破碎性地层安全高效钻井液关键技术. 化工管理. 2025(04): 165-168 . 百度学术
3. 智慧文,栗涵洁,权子涵. 井研地区筇竹寺组页岩储层水平井钻井井壁稳定性评价. 中外能源. 2024(03): 62-66 . 百度学术
4. 杨斌,许成元,张浩,郭予凡,杨建,李越,赵建国. 深部破碎地层井壁失稳机理研究进展与攻关对策. 石油学报. 2024(05): 875-888 . 百度学术
5. 衣方宇,王琦,杨杰,朱子阳,王昶皓,庞皓安. 苏里格气田多层理泥岩井壁坍塌机理分析. 能源与环保. 2024(05): 97-104 . 百度学术
6. 王帅,谢勰,刘厚彬,陶思才,杜爽,冷程锦,冯春宇. 川南龙马溪组页岩地层井壁崩塌破坏机制研究. 钻采工艺. 2024(05): 33-40 . 百度学术
7. 祁文莉,吴惠梅,谢贤东,楼一珊,刘宏. 苏北盆地地层岩石特性及井壁坍塌周期研究. 中国海上油气. 2024(06): 108-118 . 百度学术
8. 苏广,李刚权,赵志良,陈忠云,叶寒,邓富元. 考虑化学势作用下钻井液侵入泥页岩水层理论模型. 山东石油化工学院学报. 2024(04): 62-67 . 百度学术
9. 刘卫彬,徐兴友,陈珊,白静,李耀华. 松辽盆地陆相页岩油地质工程一体化高效勘查关键技术与工程示范. 地球科学. 2023(01): 173-190 . 百度学术
10. 施赵南,高斐. 力-化耦合作用下水化坍塌周期研究. 科技创新与应用. 2023(13): 71-74 . 百度学术
11. 张文,刘向君,梁利喜,熊健. 致密砂岩地层气体钻井井眼稳定性试验研究. 石油钻探技术. 2023(02): 37-45 . 本站查看
12. 黄亮,余意,任冠龙,孟文波,郑文培. 裸眼测试井壁失稳概率及参数敏感性分析. 石油钻采工艺. 2023(02): 143-150 . 百度学术
13. 喻贵民. 一种颗粒离散元的井壁稳定性分析模型. 石油钻采工艺. 2023(02): 129-135 . 百度学术
14. 王丽君. 苏里格硬脆性泥岩地层井壁失稳机制及钻井液技术对策. 精细石油化工进展. 2023(04): 21-25 . 百度学术
15. 丁乙,雷炜,刘向君,秦章晋,梁利喜,周吉羚,熊健. 页岩气储层自吸–水化损伤–离子扩散相关性试验研究. 石油钻探技术. 2023(05): 88-95 . 本站查看
16. 宋先知,郭勇,向冬梅,鞠鹏飞,谭强,刘伟. 呼图壁背斜水基钻井液井壁失稳机理多场耦合分析. 新疆石油天然气. 2023(04): 1-9 . 百度学术
17. 张震,万秀梅,吴鹏程,李郑涛,文莉. 川南龙马溪组深层页岩井壁失稳原因分析及对策. 特种油气藏. 2022(01): 160-168 . 百度学术
18. 王伟吉,李大奇,金军斌,徐江,张杜杰. 顺北油气田破碎性地层井壁稳定技术难题与对策. 科学技术与工程. 2022(13): 5205-5212 . 百度学术
19. 胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 . 本站查看
20. 聂岚,刘其明,李衡. 川西南资阳—东峰场区块须家河组地层井壁稳定性. 天然气技术与经济. 2022(04): 49-53+59 . 百度学术
21. 刘卫彬,徐兴友,张君峰,陈珊,白静,刘畅,李耀华. 陆相页岩地层地质-工程一体化水平井精确钻探技术——以松辽盆地吉页油1HF井为例. 中国地质. 2022(06): 1808-1822 . 百度学术
22. 薛少飞,李伟,张文哲,王波,殷嘉伟. 延长区块炭质泥岩高性能水基钻井液研究. 辽宁化工. 2021(05): 720-722 . 百度学术
23. 程万,孙家应,尹德战,蒋国盛. 深层泥页岩井壁失稳机理与预测模型研究进展. 钻探工程. 2021(10): 21-28 . 百度学术
24. 刘浩童,刘玉栋,段晓苗,王楠,李玲,潘晨. 页岩稳定剂氧化石墨烯的研制与评价. 断块油气田. 2021(06): 765-768+791 . 百度学术
25. 金军斌,欧彪,张杜杰,王希勇,李大奇,王逸. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望. 长江大学学报(自然科学版). 2021(06): 47-54 . 百度学术
其他类型引用(10)