深水钻井管柱系统动力学分析与设计方法研究

廖茂林, 周英操, 苏义脑, 连志龙, 蒋宏伟

廖茂林, 周英操, 苏义脑, 连志龙, 蒋宏伟. 深水钻井管柱系统动力学分析与设计方法研究[J]. 石油钻探技术, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031
引用本文: 廖茂林, 周英操, 苏义脑, 连志龙, 蒋宏伟. 深水钻井管柱系统动力学分析与设计方法研究[J]. 石油钻探技术, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031
LIAO Maolin, ZHOU Yingcao, SU Yinao, LIAN Zhilong, JIANG Hongwei. A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems[J]. Petroleum Drilling Techniques, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031
Citation: LIAO Maolin, ZHOU Yingcao, SU Yinao, LIAN Zhilong, JIANG Hongwei. A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems[J]. Petroleum Drilling Techniques, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031

深水钻井管柱系统动力学分析与设计方法研究

基金项目: 国家重点基础研究发展计划(“973”计划)项目“海洋深水油气安全高效钻完井基础研究”(编号:2015CB251206)资助
详细信息
    作者简介:

    廖茂林(1986—),男,四川阆中人,2009年毕业于中国石油大学(华东)石油工程专业,2016年获英国阿伯丁大学动力学与控制工程专业博士学位,工程师,主要从事深水钻井管柱力学方面的研究工作。E-mail:liaomldr@cnpc.com.cn

  • 中图分类号: TE921+.2

A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems

  • 摘要:

    深水钻井过程中,从平台延伸到井底的钻柱会在不同深度处与隔水管或井筒发生多点碰撞和摩擦,呈现出接触非线性特征。为了准确掌握深水钻井管柱系统的非线性动力学特性,将其简化为管中管结构,并提出了对应的管柱动力学模型。采用Abaqus有限元软件,对建立的管柱动力学模型进行动态响应模拟,并将模拟结果导入Isight优化软件,进行基于可靠度分析的多目标优化设计,确定出在工程可行性和安全可靠性方面都满足要求的设计参数组合。研究发现,相比于单独考虑隔水管的模型,提出的管中管模型所模拟的管柱系统整体变形程度较小,说明内外管柱之间的相互作用对深水钻井管柱系统的整体偏移有抑制作用;此外,提出的基于可靠度分析的多目标优化设计方法,可以避免优化设计结果因靠近约束边界而在参数波动情况下失效的问题。

    Abstract:

    During deepwater drilling operations, the drilling string extending from a platform to the bottom hole will collide and rub with the riser or wellbore at multiple points at different depths, presenting the characteristics of nonlinear contact. In order to accurately understand the nonlinear dynamic characteristics of deepwater drilling string systems, we proposed a dynamic model that based on the structure of pipe-in-pipe. The dynamic response simulation was conducted by using Abaqus finite element software, and then the simulation results were imported to Isight optimization software to carry out the multi-objective optimization design based on reliability analysis to determine the combination of design parameters that meet the requirement of engineering feasibility and safety reliability. The study suggests that the overall deformation of the string system from the proposed pipe-in-pipe model is smaller when compared with a model that only considers the riser, indicating that the overall offset of deepwater drilling string system is restrained by the interaction between the inner and outer strings. In addition, the proposed multi-objective optimization design method based on reliability analysis can effectively avoid the failed optimization design caused by parameter fluctuations in the vicinity of the constraint boundary.

  • 图  1   深水钻井管柱系统动力学模型

    Figure  1.   Dynamic model of deepwater drilling string system

    图  2   Abaqus数值模拟结果

    Figure  2.   Results of Abaqus numerical simulation

    图  3   主要设计参数对钻井管柱系统动态响应的影响

    Figure  3.   Effect of main design parameters on the dynamic response of drilling string system

    图  4   上、下挠性接头旋转刚度的不同组合对钻井管柱系统动态响应的影响

    Figure  4.   Effect of different combinations of the rotational stiffness of upper and lower flexible joints on the dynamic response of drilling string system

    图  5   基于可靠度分析的多目标优化设计流程

    Figure  5.   Workflow for the multi-objective optimization design based on reliability analysis

    图  6   最优解在设计参数±10%范围内波动时的可靠度分析结果

    Figure  6.   Reliability analysis results of the optimal solution when fluctuations occur within ±10% of the design parameters

    表  1   基于可靠度分析的多目标优化设计结果

    Table  1   Results of the multi-objective optimization design based on reliability analysis

    算例
    序号
    旋转刚度/(kN·m·rad–1)隔水管
    壁厚/mm
    顶部
    偏移/m
    隔水管
    顶张力/kN
    钻柱
    悬重/kN
    最大
    偏移量/m
    最大Mises
    应力/MPa
    最大转角/rad
    下挠性接头上挠性接头下挠性接头上挠性接头
    15 861. 93 005.018.8–8.18930.1977.915.40242.4–0.011 30.077 4
    24 708.8214.016.96.01848.0914.627.94236.9–0.024 80.090 1
    34 383. 43 542.925.0–12.541 391.7960.85.90226.6–0.003 10.055 4
    47 194.95 758.111.218.561 059.6805.132.06199.4–0.018 20.059 5
    52 360.01 198.210.66.251 339.5850.521.27212.5–0.017 10.069 5
    6541.61 195.523.79.35486.7966.434.55251.8–0.038 60.096 4
    710 009.64 037.115.112.031 109.4798.127.70198.4–0.012 80.065 6
    88710 314.46 971.125.1–16.751 468.0735.72.48163.10.009 70.048 3
    9952 170.96 401.225.1–17.351 468.4917.90.75207.80.000 40.044 1
    996735.76 407.125.1–16.761 468.7918.91.15208.0–0.001 70.043 9
    9977 560.47 063.59.7–16.751 471.6983.80.05227.90.011 50.043 4
    9989 299.36 880.89.7–16.331 474.8834.21.69191.80.012 10.049 7
    9997 446.56 401.227.2–17.351 468.4754.22.18167.70.005 50.049 5
    1 0009 375.06 554.69.7–16.751 471.6983.80.25229.10.013 30.045 4
    下载: 导出CSV
  • [1] 周守为, 刘清友.深水钻井隔水管系统力学行为理论及应用研究[M].北京: 科学出版社, 2016: 1-8.

    ZHOU Shouwei, LIU Qinyou. Theory and application research of deepwater drilling riser system mechanical behavior[M]. Beijing: Science Press, 2016: 1-8.

    [2]

    BURKE B G. An analysis of marine risers for deep water[J]. Journal of Petroleum Technology, 1974, 26(4): 455–465.

    [3]

    SIMMONDS D G. Dynamic analysis of the marine riser[R]. SPE 9735, 1980.

    [4]

    KROLIKOWSKI L P, GAY T A. An improved linearization technique for frequency domain riser analysis[R]. OTC 3777, 1980.

    [5]

    DAREING D W, HUANG T. Natural frequencies of marine drilling risers[J]. Journal of Petroleum Technology, 1976, 28(7): 813–818.

    [6]

    KIRK C L, ETOK E U, COOPER M T. Dynamic and static analysis of a marine riser[J]. Applied Ocean Research, 1979, 1(3): 125–135.

    [7]

    PATEL M H, SAROHIA S, NG K F. Finite-element analysis of the marine riser[J]. Engineering Structures, 1984, 6(3): 175–184.

    [8] 王宴滨, 高德利, 房军. 海洋钻井隔水管–钻井液横向耦合振动特性[J]. 石油钻采工艺, 2015, 13(1): 25–29.

    WANG Yanbin, GAO Deli, FANG Jun. Characteristic analysis on transverse coupling vibration of offshore drilling riser-drilling fluid[J]. Oil Drilling & Production Technology, 2015, 13(1): 25–29.

    [9] 闫铁, 刘珊珊, 毕雪亮, 等. 考虑钻柱作用的深海隔水管柱力学分析[J]. 石油矿场机械, 2014, 43(8): 13–17.

    YAN Tie, LIU Shanshan, BI Xueliang, et al. Mechanical analysis of deep sea riser considering the effects of drill string[J]. Oil Field Equipment, 2014, 43(8): 13–17.

    [10]

    YAZDCHI M, CRISFELD M A. Non-linear dynamic behaviour of flexible marine pipes and risers[J]. International Journal for Numerical Methods in Engineering, 2002, 54(9): 1265–1308.

    [11]

    RAMAN-NAIR W R, BADDOUR R E. Three-dimensional dynamics of a flexible marine riser undergoing large elastic deformations[J]. Multibody System Dynamics, 2003, 10(4): 393–423.

图(6)  /  表(1)
计量
  • 文章访问数:  1259
  • HTML全文浏览量:  753
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2019-02-14
  • 网络出版日期:  2019-03-29
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回