高温高压对微波破岩效果的影响模拟研究

胡亮, 马兰荣, 谷磊, 李丹丹, 韩艳浓

胡亮, 马兰荣, 谷磊, 李丹丹, 韩艳浓. 高温高压对微波破岩效果的影响模拟研究[J]. 石油钻探技术, 2019, 47(2): 50-55. DOI: 10.11911/syztjs.2019020
引用本文: 胡亮, 马兰荣, 谷磊, 李丹丹, 韩艳浓. 高温高压对微波破岩效果的影响模拟研究[J]. 石油钻探技术, 2019, 47(2): 50-55. DOI: 10.11911/syztjs.2019020
HU Liang, MA Lanrong, GU Lei, LI Dandan, HAN Yannong. Simulation Study on the Influences of HTHP on the Results of Microwave Rock Breaking[J]. Petroleum Drilling Techniques, 2019, 47(2): 50-55. DOI: 10.11911/syztjs.2019020
Citation: HU Liang, MA Lanrong, GU Lei, LI Dandan, HAN Yannong. Simulation Study on the Influences of HTHP on the Results of Microwave Rock Breaking[J]. Petroleum Drilling Techniques, 2019, 47(2): 50-55. DOI: 10.11911/syztjs.2019020

高温高压对微波破岩效果的影响模拟研究

基金项目: 国家科技重大专项“超深井碳酸盐岩储层改造及测试关键技术”(编号:2017ZX05005-005-004)、中国石化科技攻关项目“基于RFID控制随钻扩眼器技术研究”(编号:P15007)资助
详细信息
    作者简介:

    胡亮(1984—),男,河北任丘人,2007年毕业于北京理工大学探测制导与控制技术专业,2015年获中国石油大学(北京)油气井工程专业博士学位,工程师,主要从事钻井工具的研发工作。E-mail:HL9788@sina.com

  • 中图分类号: TE921+.2

Simulation Study on the Influences of HTHP on the Results of Microwave Rock Breaking

  • 摘要:

    为了将微波破岩技术应用于石油钻井,研究了钻井过程中高温高压对微波破岩效果的影响。根据岩石不同矿物成分的微波吸收特性,建立了某岩石的二维平面模型,模拟分析了温度、围压及二者共同作用对微波破岩效果的影响。研究发现:在微波照射参数相同的情况下,随着井下温度升高,岩石发生塑性变形的时间缩短;随着井下围压增大,岩石塑性变形时间延长;温度和围压共同作用时,围压的影响占主导作用,而温度的影响主要在高温条件下体现。研究结果表明,围压不利于微波破岩,且影响较大;温度对微波破岩有一定促进作用,但只在高温条件下作用明显。因此,应用微波进行破岩时要综合考虑温度和围压变化对破岩效果的影响,及时调整微波参数,使破岩更加经济高效。

    Abstract:

    In order to apply a microwave rock breaking technology in petroleum drilling, the influences of HTHP on the microwave rock breaking result during drilling were studied. According to the microwave absorption characteristics of rock components, a two-dimensional plane model of a rock was established, and the influences of temperature, confining pressure and the combination of both the two on microwave rock breaking result were simulated. The study result found that under the same microwave irradiation parameters, the plastic deformation time of rock shortened with the increase of downhole temperature, and the plastic deformation time of rock increased with the increase of downhole confining pressure. Considering the combined results of both temperature and confining pressure, the influence of confining pressure was dominant, while the effect of temperature mainly exerted under high temperature conditions. The results showed that the confining pressure did not result in microwave rock breaking, and the influence was obvious; temperature had a certain promotion effect on microwave rock breaking, but such an effect was evident only under high temperature conditions. Therefore, when applying microwave in rock breaking, it is necessary to comprehensively consider the influences of temperature and confining pressure on rock breaking results, and to adjust the microwave parameters in time to make the rock breaking more economical and efficient.

  • 图  1   岩石二维平面模型

    Figure  1.   Two-dimensional plane model of rock

    图  2   模型的温度分布

    Figure  2.   Temperature distribution of the model

    图  3   模型的温度梯度分布

    Figure  3.   Temperature gradient distribution of the model

    图  4   模型的应力分布

    Figure  4.   Stress distribution of the model

    图  5   微波照射下模型的塑性变形

    Figure  5.   Plastic deformation of the model under microwave irradiation

    图  6   不同环境温度下方解石某节点的温度增幅

    Figure  6.   Temperature amplification of a node in calcite under different ambient temperatures

    图  7   不同环境温度下方解石某节点的温度梯度极值

    Figure  7.   Temperature gradient extremum of a node in calcite under different ambient temperatures

    图  8   不同环境温度下方解石某节点的塑性变形时间

    Figure  8.   Plastic deformation times of a node in calcite under different ambient temperatures

    图  9   施加围压前后方解石某节点的应力对比

    Figure  9.   Comparison on the force of a node in calcite before and after confining pressure

    图  10   不同围压下方解石某节点的塑性变形时间

    Figure  10.   Plastic deformation times of a node in calcite under different confining pressures

    图  11   不同温度和围压作用下方解石某节点的塑性变形时间

    Figure  11.   Plastic deformation times of a node in calcite under different temperature and confining pressure

    表  1   岩石各成分的热膨胀系数

    Table  1   Thermal expansion coefficients of various rock components

    温度/℃热膨胀系数/℃–1
    方解石黄铁矿
    1001.31×10–52.73×10–5
    2001.58×10–52.93×10–5
    3002.01×10–53.39×10–5
    4002.40×10–5
    下载: 导出CSV

    表  2   岩石各成分在不同温度下的热传导系数及比热

    Table  2   Thermal conductivity and specific heat of various rock components at different temperatures

    岩石
    成分
    热传导系数/(W·m–1·℃–1比热/(J·kg–1·℃–1
    25 ℃100 ℃227 ℃25 ℃227 ℃727 ℃
    方解石4.023.012.558191 0511 238
    黄铁矿37.9020.5017.00517600684
    下载: 导出CSV

    表  3   岩石各成分的力学参数

    Table  3   Mechanical parameters of various rock component

    岩石
    成分
    密度/
    (kg·m–3
    弹性模量/
    GPa
    泊松比摩擦角/
    (°)
    黏聚力/
    MPa
    方解石2 6807970.325425
    黄铁矿5 0182920.165425
    下载: 导出CSV
  • [1] 赵志国, 白彬珍, 何世明, 等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13.

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.

    [2] 张强. 岩石破碎技术发展趋势[J]. 有色矿山, 1996(6): 20–22.

    ZHANG Qiang. Rock-breaking technology trends[J]. China Mine Engineering, 1996(6): 20–22.

    [3] 鲍挺, 黄宁. 岩石破碎技术研究与发展前景[J]. 安徽建筑, 2010(6): 110, 116.

    BAO Ting, HUANG Ning. The research and development prospects of rock-breaking technology[J]. Anhui Architecture, 2010(6): 110, 116.

    [4]

    VIKTOROV S D, KUZNETSO A P. Explosive breaking of rock: a retrospective and a possible alternative[J]. Journal of Mining Science, 1998, 34(1): 43–49. doi: 10.1007/BF02765524

    [5] 李文成, 杜雪鹏. 微波辅助破岩新技术在非煤矿的应用[J]. 铜业工程, 2010(4): 1–4. doi: 10.3969/j.issn.1009-3842.2010.04.001

    LI Wencheng, DU Xuepeng. Application of microwave-assisted rock breaking in metal mines[J]. Coffer Engineering, 2010(4): 1–4. doi: 10.3969/j.issn.1009-3842.2010.04.001

    [6] 郭先敏. 毫米波钻井技术[J]. 石油钻探技术, 2014, 42(3): 55–60.

    GUO Xianmin. Millimeter wave drilling technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55–60.

    [7]

    KINGMAN S W. Recent developments in microwave processing of minerals[J]. International Materials Reviews, 2006, 51(1): 1–12. doi: 10.1179/174328006X79472

    [8]

    LOVÁS M, KOVÁČOVÁ M, DIMITRAKIS G, et al. Modeling of microwave heating of andesite and minerals[J]. International Journal of Heat and Mass Transfer, 2010, 53(17/18): 3387–3393.

    [9]

    HASSANI F, NEKOOVAGHT P M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1–15. doi: 10.1016/j.jrmge.2015.10.004

    [10]

    AZAR M, KESHAVAN M, COOPER I M. Energy-emitting bits and cutting elements: WO2017/151353[P/OL]. 2017-09-08[2018-08-12]. https://patentscope.wipo.int/search/zh/detail.jsf?docId=WO2017151353&redirectedID=true

    [11] 戴俊, 孟振, 吴丙权. 微波照射对岩石强度的影响研究[J]. 有色金属(选矿部分), 2014(3): 54–57. doi: 10.3969/j.issn.1671-9492.2014.03.014

    DAI Jun, MENG Zhen, WU Bingquan. Study on impact of rock strength by microwave irradiation[J]. Monferrous Metals(Mineral Processing Section), 2014(3): 54–57. doi: 10.3969/j.issn.1671-9492.2014.03.014

    [12] 卢高明, 李元辉, HASSANI Ferri, et al. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497–1506.

    LU Gaoming, LI Yuanhui, HASSANI F, et al. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497–1506.

    [13] 戴俊, 秦立科. 微波照射下岩石损伤细观模拟分析[J]. 西安科技大学学报, 2014, 34(6): 652–655.

    DAI Jun, QIN Like. Meso-simulation of rock damage under microwave irradiation[J]. Journal of Xi’an University of Science and Technology, 2014, 34(6): 652–655.

    [14] 黄孟阳, 彭金辉, 雷鹰, 等. 微波场中钛精矿的温升行为及吸波特性[J]. 四川大学学报(工程科学版), 2007, 39(2): 111–115. doi: 10.3969/j.issn.1009-3087.2007.02.021

    HUANG Mengyang, PENG Jinhui, LEI Ying, et al. The temperature rise behavior and microwave-absorbing characteristics of ilmenite concentrate in microwave field[J]. Journal of Sichuan University (Engineering Science Edition), 2007, 39(2): 111–115. doi: 10.3969/j.issn.1009-3087.2007.02.021

    [15] 陈超, 刘建. 数值分析方法在微波辅助破岩中的应用[J]. 华北理工大学学报(自然科学版), 2017, 39(4): 28–33. doi: 10.3969/j.issn.2095-2716.2017.04.005

    CHEN Chao, LIU Jian. Application of numerical analysis method in microwave assisted rock breaking[J]. Journal of North China University of Science and Technology(Natural Science Edition), 2017, 39(4): 28–33. doi: 10.3969/j.issn.2095-2716.2017.04.005

    [16] 唐阳, 徐国宾, 孙丽莹, 等. 不同间断比尺下微波诱发岩石损伤的离散元模拟研究[J]. 水力发电学报, 2016, 35(7): 15–22.

    TANG Yang, XU Guobin, SUN Liying, et al. Discrete element modeling of microwave-induced rock damage at different discontinuity scales[J]. Journal of Hydroelectric Engineering, 2016, 35(7): 15–22.

    [17] 杨晓庆, 黄卡玛, 黄镇钢, 等. 微波加热模拟中的关键问题讨论[J]. 压电与声光, 2008, 30(2): 105–107.

    YANG Xiaoqing, HUANG Kama, HUANG Zhengang, et al. Study on the key problems of numeric simulation of microwave heating[J]. Piezoelectectrics & Acoustooptics, 2008, 30(2): 105–107.

    [18] 秦立科, 戴俊. 微波照射下矿物颗粒温度分布及影响因素分析[J]. 矿冶工程, 2015, 35(3): 96–98. doi: 10.3969/j.issn.0253-6099.2015.03.026

    QIN Like, DAI Jun. Temperature distribution and influential factors for ore particles under microwave irradiation[J]. Mining and Metallurgical Engineering, 2015, 35(3): 96–98. doi: 10.3969/j.issn.0253-6099.2015.03.026

  • 期刊类型引用(18)

    1. 刘涛,何淼,张亚,陈鑫,阚正玉,王世鸣. 小井眼超深井井筒温度预测模型及降温方法研究. 钻采工艺. 2024(03): 65-72 . 百度学术
    2. 张政,赵豫,王国荣,钟林,王敬朋. 地热井钻井过程中漏失对井筒温度分布的影响. 科学技术与工程. 2024(23): 9819-9826 . 百度学术
    3. 欧彪,董波,严焱诚,江波,肖东. 深层碳酸盐岩地层长水平段钻井井筒温度分布模型研究. 科学技术与工程. 2023(03): 1008-1016 . 百度学术
    4. 王庆,张佳伟,孙铭浩,纪国栋,汪海阁,孙晓峰. 大庆油田古龙页岩岩屑在幂律流体中的沉降阻力系数研究. 石油钻探技术. 2023(02): 54-60 . 本站查看
    5. 柳鹤,于国伟,于琛,郑锋,陈文博,王超,郑双进. 基于地面降温的井下钻井液冷却技术. 钻井液与完井液. 2023(06): 756-764 . 百度学术
    6. 张锐尧,李军,柳贡慧,杨宏伟,王江帅,文涛. 双梯度钻井关键工具及井筒压力动态变化规律. 石油机械. 2022(01): 1-9 . 百度学术
    7. 刘奕杉,黄顺潇,袁光杰,唐洋. 煤炭地下气化高温井筒温度场研究. 煤炭转化. 2022(01): 58-64 . 百度学术
    8. 张锐尧,李军,柳贡慧. 深水变梯度钻井井筒压力预测模型的研究. 石油科学通报. 2022(04): 564-575 . 百度学术
    9. 张锐尧,蒋振新,李军,郭勇,柳贡慧. 多梯度钻井分离器冲蚀磨损分析及流场研究. 石油机械. 2021(01): 80-87 . 百度学术
    10. 余意,王雪瑞,柯珂,王迪,于鑫,高永海. 极地钻井井筒温度压力预测模型及分布规律研究. 石油钻探技术. 2021(03): 11-20 . 本站查看
    11. 张锐尧,李军,柳贡慧,杨宏伟. 深水钻井多压力系统条件下的井筒温度场研究. 石油机械. 2021(07): 77-85 . 百度学术
    12. 张锐尧,李军,柳贡慧,杨宏伟,王江帅,高热雨. 基于空心球滑移条件下的双梯度钻井井筒温压场的研究. 石油科学通报. 2021(03): 429-440 . 百度学术
    13. 张锐尧,李军,柳贡慧,王鹏. 深水多梯度钻井空心球分离规律及其对井筒传热与传质的影响. 钻采工艺. 2021(05): 16-21 . 百度学术
    14. 杨宏伟,李军,柳贡慧,高旭,王江帅,骆奎栋. 深水多梯度钻井井筒温度场. 中国石油大学学报(自然科学版). 2020(05): 62-69 . 百度学术
    15. 朱广海,刘章聪,熊旭东,宋洵成,王军恒,翁博. 电加热稠油热采井筒温度场数值计算方法. 石油钻探技术. 2019(05): 110-115 . 本站查看
    16. 刘文成,赵丹汇,赵琥,郭朝红,姜玉雁,李志刚. 考虑钻具磨损内热源的深水钻井循环温度场研究. 中国海上油气. 2018(01): 136-141 . 百度学术
    17. 李梦博,许亮斌,罗洪斌,耿亚楠,李根生. 深水高温钻井井筒循环温度分布与控制方法研究. 中国海上油气. 2018(04): 158-162 . 百度学术
    18. 何淼,柳贡慧,李军,李梦博,查春青,李根. 多相流全瞬态温度压力场耦合模型求解及分析. 石油钻探技术. 2015(02): 25-32 . 本站查看

    其他类型引用(8)

图(11)  /  表(3)
计量
  • 文章访问数:  12147
  • HTML全文浏览量:  6227
  • PDF下载量:  77
  • 被引次数: 26
出版历程
  • 收稿日期:  2018-08-12
  • 修回日期:  2018-12-04
  • 网络出版日期:  2019-01-10
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回