随钻一体化测井仪平台开发

朱祖扬, 倪卫宁, 张卫, 米金泰, 郑奕挺

朱祖扬, 倪卫宁, 张卫, 米金泰, 郑奕挺. 随钻一体化测井仪平台开发[J]. 石油钻探技术, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016
引用本文: 朱祖扬, 倪卫宁, 张卫, 米金泰, 郑奕挺. 随钻一体化测井仪平台开发[J]. 石油钻探技术, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016
ZHU Zuyang, NI Weining, ZHANG Wei, MI Jintai, ZHENG Yiting. The Development of an Integrated Logging Instrument Platform while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016
Citation: ZHU Zuyang, NI Weining, ZHANG Wei, MI Jintai, ZHENG Yiting. The Development of an Integrated Logging Instrument Platform while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016

随钻一体化测井仪平台开发

基金项目: 国家科技重大专项“低渗透储层高精度随钻成像技术研究”(编号:2016ZX05021-002)资助
详细信息
    作者简介:

    朱祖扬(1981—),男,江西南昌人,2004年毕业于云南大学地球物理专业,2007年获中国地震局固体地球物理专业硕士学位,2011年获中国科学院声学专业博士学位,副研究员,主要从事随钻测量仪器研发工作。E-mail:zhuzuyang_2001@126.com

  • 中图分类号: TE927

The Development of an Integrated Logging Instrument Platform while Drilling

  • 摘要:

    为了满足多深度探测评价钻井液侵入和识别地层岩性的需要,开发了具有电阻率、伽马等多参数测量功能的随钻一体化测井仪平台。基于相移电阻率、衰减电阻率、总量伽马和成像伽马等测量方法,采用六发两收的八线圈系设计方案,挂接了伽马探管、加速度计和磁通门等传感器,同时采用了由发射电路、接收电路和控制电路组成的模块化电路设计方案,并定义了总线通讯协议,建立起了各功能模块之间的信息传递。开发了测井仪平台的固件程序,不仅能够测量相移电阻率和衰减电阻率数据,还能够测量伽马数据和地层方位信息;开发了平台测试软件,能够对仪器进行标定测试及下井前的启动设置,实现仪器控制指令的下发,测量数据的上传,并对电阻率、伽马、井斜角和工具面等数据进行监测和图形化处理。研制的随钻一体化测井仪平台可以为大斜度井和水平井钻井提供丰富的、高质量的测井数据,为地层评价提供所需要的数据,从而为非常规油气储层开发提供技术支持。

    Abstract:

    The goals were to detect characteristics of of multi-depth formations and evaluate mud intrusion as well as identify the formation lithology. To that end, researchers developed an integrated logging instrument platform while drilling capable of multi-parameter measurement such as resistivity and Gamma. According to the measurement methods like phase shift resistivity, attenuation resistivity, total Gamma and imaging Gamma, an eight-coil design (six senders and two receivers) was adopted, and the sensors such as Gamma probes, accelerometers, and fluxgates were attached. Meanwhile, the modular circuit design scheme consisting of transmitting circuit, receiving circuit and control circuit was applied. Researchers then defined the bus communication protocol to establish the information transmission among various functional modules. The firmware program for the logging instrument platform has been developed, which can not only measures the phase shift resistivity and attenuation resistivity data, but also measure the Gamma data and formation azimuth information. The test software for the platform has been developed to calibrate the instrument and enable the startup setting prior to running in hole, realize the issuing of control commands and upload the measurement data, and monitor and graphically process data such as resistivity, Gamma, inclination angle, and tool face. This integrated logging instrument platform could provide abundant high-quality logging data for high-angle well and horizontal well drilling, and acquire necessary data for formation evaluation, so as to provide technical support and best practices for the development of unconventional oil and gas reservoirs.

  • 图  1   硬件电路平台

    Figure  1.   Hardware circuit platform

    图  2   一帧数据格式定义

    Figure  2.   Definition of one-frame data format

    图  3   发送和接收数据的流程

    Figure  3.   Process of sending and receiving data

    图  4   数据图形化流程

    Figure  4.   Data graphics processing flow

    图  5   绘制电阻率曲线的流程

    Figure  5.   Flow of resistivity curve drawing

    图  6   伽马成像流程

    Figure  6.   Flow of Gamma imaging

    图  7   时钟同步和更新流程

    Figure  7.   Clock synchronization and update process

    图  8   数据快速下载流程

    Figure  8.   Data fast download process

    图  9   电磁波的波形

    Figure  9.   Waveform of electromagnetic wave

    图  10   伽马成像图

    Figure  10.   Gamma imaging

    表  1   仪器和操作代号定义

    Table  1   Definition of instrument and operation codes

    序号 标号 分类 平台参数 代号
    1 (A) 仪器和设备 随钻一体化测井仪 X1
    2 (B) 中央控制电路板 X2
    3 (C) 发射电路板 X3
    4 (D) 接收电路板 X4
    5 (E) 软件平台(PC机) X5
    6 (F) MWD仪器 X6
    7 测量参数 电阻率 X7/X8
    8 伽马 X9/X10
    9 加速度 X11/X12
    10 磁通量 X13/X14
    11 功能操作 RTC同步/更新 X15/X16
    12 Flash数据下载/擦除 X17/X18
    13 控制板版本号 X19
    14 接收板版本号 X20
    15 发射板版本号 X21
    16 PC机确认信息 X22
    下载: 导出CSV

    表  2   发射板数据格式

    Table  2   Data format of transmitting circuit

    序号 命令头 操作 含义
    1 A1 A2 A3 A4 A5 A6 A7 F2 S1 选择发射频率500 kHz,近距离上部线圈发射
    2 A1 A2 A3 A4 A5 A6 A7 F2 S2 选择发射频率500 kHz,近距离下部线圈发射
    3 A1 A2 A3 A4 A5 A6 A7 F2 S3 选择发射频率500 kHz,中距离上部线圈发射
    4 A1 A2 A3 A4 A5 A6 A7 F2 S4 选择发射频率500 kHz,中距离下部线圈发射
    5 A1 A2 A3 A4 A5 A6 A7 F2 S5 选择发射频率500 kHz,远距离上部线圈发射
    6 A1 A2 A3 A4 A5 A6 A7 F2 S6 选择发射频率500 kHz,远距离下部线圈发射
    7 A1 A2 A3 A4 A5 A6 A7 F3 S1 选择发射频率2 MHz,近距离上部线圈发射
    8 A1 A2 A3 A4 A5 A6 A7 F3 S2 选择发射频率2 MHz,近距离下部线圈发射
    9 A1 A2 A3 A4 A5 A6 A7 F3 S3 选择发射频率2 MHz,中距离上部线圈发射
    10 A1 A2 A3 A4 A5 A6 A7 F3 S4 选择发射频率2 MHz,中距离下部线圈发射
    11 A1 A2 A3 A4 A5 A6 A7 F3 S5 选择发射频率2 MHz,远距离上部线圈发射
    12 A1 A2 A3 A4 A5 A6 A7 F3 S6 选择发射频率2 MHz,远距离下部线圈发射
    下载: 导出CSV

    表  4   接收电阻率曲线类型

    Table  4   The types of receiving resistivity curves

    编号 接收数据类型
    1 近距离500 kHz频率发射得到的电磁波幅度衰减
    2 近距离2 MHz频率发射得到的电磁波幅度衰减
    3 近距离500 kHz频率发射得到的电磁波相位差
    4 近距离2 MHz频率发射得到的电磁波相位差
    5 中距离500 kHz频率发射得到的电磁波幅度衰减
    6 中距离2 MHz频率发射得到的电磁波幅度衰减
    7 中距离500 kHz频率发射得到的电磁波相位差
    8 中距离2 MHz频率发射得到的电磁波相位差
    9 远距离500 kHz频率发射得到的电磁波幅度衰减
    10 远距离2 MHz频率发射得到的电磁波幅度衰减
    11 远距离500 kHz频率发射得到的电磁波相位差
    12 远距离2 MHz频率发射得到的电磁波相位差
    下载: 导出CSV

    表  3   索引值表

    Table  3   Index value table

    索引值 RGB
    R G B
    0 250 255 179
    1 250 254 176
    2 250 253 173
    298 77 40 6
    299 76 39 6
    300 75 38 6
    下载: 导出CSV
  • [1] 秦绪英, 肖立志, 索佰峰. 随钻测井技术最新进展及其应用[J]. 勘探地球物理进展, 2003, 26(4): 313–322 http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200304015

    QIN Xuying, XIAO Lizhi, SUO Baifeng. The development of logging while drilling and its application[J]. Progress in Exploration Geophysics, 2003, 26(4): 313–322 http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200304015

    [2] 张辛耘, 王敬农, 郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15 doi: 10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15 doi: 10.3969/j.issn.1004-1338.2006.01.002

    [3] 赵平, 郭永旭, 张秋海. 随钻测井技术新进展[J]. 国外测井技术, 2013, 34(2): 7–17 http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201003044

    ZHAO Ping, GUO Yongxu, ZHANG Qiuhai. Recent advances in logging while drilling[J]. World Well Logging Technology, 2013, 34(2): 7–17 http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201003044

    [4] 李洪强, 丁景丽, 林楠, 等. 随钻伽马测量数据处理方法的研究及应用[J]. 石油钻探技术, 2008, 36(4): 12–14 doi: 10.3969/j.issn.1001-0890.2008.04.003

    LI Hongqiang, DING Jingli, LIN Nan, et al. Research and application of data processing in gamma ray logging while drilling[J]. Petroleum Drilling Techniques, 2008, 36(4): 12–14 doi: 10.3969/j.issn.1001-0890.2008.04.003

    [5] 骆庆锋, 李安宗, 陈鹏, 等. 一种随钻伽马成像数据处理方法: CN201510927599.8 [P]. 2015-12-14.

    LUO Qingfeng, LI Anzong, CHEN Peng, et al. A data processing method of gamma imaging while drilling: CN201510927599.8[P]. 2015-12-14.

    [6] 吴文圣, 李梦婷. 随钻伽马成像测井方位分辨率计算方法及装置与流程: CN201810292102.3[P]. 2018-04-03.

    WU Wensheng, LI Mengting. Azimuth resolution calculation method and device for gamma imaging logging while drilling: CN201810292102.3[P]. 2018-04-03.

    [7]

    XU Libai. Method for correcting natural gamma ray logging measurements: US15248962 [P]. 2016-08-26.

    [8] 史晓锋, 李铮, 蔡志权. 随钻电磁波传播电阻率测量工具探测深度研究[J]. 测井技术, 2002, 26(2): 113–117 doi: 10.3969/j.issn.1004-1338.2002.02.007

    SHI Xiaofeng, LI Zheng, CAI Zhiquan. Inversion depth of MWD propagation resistivity logging[J]. Well Logging Technology, 2002, 26(2): 113–117 doi: 10.3969/j.issn.1004-1338.2002.02.007

    [9] 黄忠富, 黄瑞光, 陈鹏. 随钻电阻率测井仪器的实现[J]. 测井技术, 2002, 26(2): 172–175 doi: 10.3969/j.issn.1004-1338.2002.02.022

    HUANG Zhongfu, HUANG Ruiguang, CHEN Peng. Development of MWD resistivity logging tool[J]. Well Logging Technology, 2002, 26(2): 172–175 doi: 10.3969/j.issn.1004-1338.2002.02.022

    [10] 杨震, 肖红兵, 李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术, 2017, 45(4): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201704020

    YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201704020

    [11] 刘乃震, 王忠, 刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm

    LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm

    [12] 倪卫宁, 张晓彬, 万勇, 等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术, 2017, 45(2): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702019

    NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702019

    [13] 王磊, 范宜仁, 邢涛, 等. 基于随钻电磁波测井资料的地层各向异性电阻率提取方法: CN201711336574.6 [P]. 2017-12-14.

    WANG Lei, FAN Yiren, XING Tao, et al. Extraction of formation anisotropic resistivity based on electromagnetic logging while dril-ling data: CN201711336574.6[P]. 2017-12-14.

    [14] 杨锦舟, 肖红兵, 杨全进, 等. 一种随钻电阻率近钻头测量装置: CN201310003353.2 [P]. 2013-01-06.

    YANG Jinzhou, XIAO Hongbing, YANG Quanjin, et al. A near bit me-asuring device for resistivity while drilling: CN201310003353.2[P]. 2013-01-06.

    [15]

    WANG Tsili. Apparatus and method for microresistivity imaging in which transmitter coil and receiver coil axes are substantially per-pendicular to the longitudinal axis of the tool body: US13819122[P]. 2011-08-26.

  • 期刊类型引用(10)

    1. 戴文潮,刘奔. 高性能底封拖动分段压裂工具研制及试验. 钻采工艺. 2023(01): 120-125 . 百度学术
    2. 谢斌,陈超峰,马都都,练章华,史君林. 超深高温高压井尾管悬挂器安全性评价新方法. 天然气工业. 2022(09): 93-101 . 百度学术
    3. 郭朝辉,李振,罗恒荣. Φ273.1mm无限极循环尾管悬挂器在元坝气田的应用研究. 石油钻探技术. 2021(05): 64-69 . 本站查看
    4. 古青,宋剑鸣,曹博,马淼,蒋立坤,杨旭,冯治锋. 高温高压尾管悬挂器研制与应用. 石油矿场机械. 2021(06): 51-57 . 百度学术
    5. 高果成. 内嵌卡瓦尾管悬挂器在老井侧钻中的优势综合分析. 钻采工艺. 2020(01): 77-80+12 . 百度学术
    6. 马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步. 石油钻探技术. 2019(03): 34-40 . 本站查看
    7. 朱晓丽,张金法,魏书雷. 尾管用内嵌式卡瓦坐挂机构承载能力分析. 石油矿场机械. 2018(05): 84-87 . 百度学术
    8. 马兰荣,达伟,韩峰,张瑞. 高性能尾管悬挂器关键技术. 断块油气田. 2017(06): 859-862 . 百度学术
    9. 刘珂兵,贾彪,王庆,黄煜鹏. 关于内嵌卡瓦尾管悬挂器的应用探讨. 中国石油和化工标准与质量. 2016(22): 74-75 . 百度学术
    10. 韩峰,崔晓杰,薛占峰,邓同军. 悬挂器坐挂引起的套管二维屈曲失效形式研究. 中国科技论文. 2016(23): 2696-2699+2710 . 百度学术

    其他类型引用(1)

图(10)  /  表(4)
计量
  • 文章访问数:  11664
  • HTML全文浏览量:  6038
  • PDF下载量:  100
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-12-02
  • 网络出版日期:  2019-01-16
  • 刊出日期:  2018-12-31

目录

    /

    返回文章
    返回