Processing math: 0%

S135钻杆接头缺口疲劳行为研究

李皓, 曾德智, 高定祥, 刘飞, 田刚, 施太和

李皓, 曾德智, 高定祥, 刘飞, 田刚, 施太和. S135钻杆接头缺口疲劳行为研究[J]. 石油钻探技术, 2019, 47(4): 64-69. DOI: 10.11911/syztjs.2019013
引用本文: 李皓, 曾德智, 高定祥, 刘飞, 田刚, 施太和. S135钻杆接头缺口疲劳行为研究[J]. 石油钻探技术, 2019, 47(4): 64-69. DOI: 10.11911/syztjs.2019013
LI Hao, ZENG Dezhi, GAO Dingxiang, LIU Fei, TIAN Gang, SHI Taihe. A Study of the Notch Fatigue Behavior of S135 Drill Pipe Joint[J]. Petroleum Drilling Techniques, 2019, 47(4): 64-69. DOI: 10.11911/syztjs.2019013
Citation: LI Hao, ZENG Dezhi, GAO Dingxiang, LIU Fei, TIAN Gang, SHI Taihe. A Study of the Notch Fatigue Behavior of S135 Drill Pipe Joint[J]. Petroleum Drilling Techniques, 2019, 47(4): 64-69. DOI: 10.11911/syztjs.2019013

S135钻杆接头缺口疲劳行为研究

基金项目: 国家自然科学基金项目“静载、振动与腐蚀耦合作用下H2S/CO2气井完井管柱螺纹密封面的力化学损伤机制研究”(编号:51774249)、中国石化科技重大专项“顺北一区采输关键技术研究与应用”子课题“顺北一区高效采油技术研究”(编号:ZDP17004)联合资助
详细信息
    作者简介:

    李皓(1988—),男,甘肃陇南人,2011年毕业于兰州城市学院石油工程专业,2018年获西南石油大学油气井工程专业硕士学位,主要从事油气设施腐蚀与防护工作。E-mail:lihao1477024473@163.com

    通讯作者:

    曾德智,zengdezhi1980@163.com

  • 中图分类号: TE28

A Study of the Notch Fatigue Behavior of S135 Drill Pipe Joint

  • 摘要:

    钻杆接头疲劳失效是钻杆失效的主要形式,因此,为提高钻杆的使用寿命,对S135钻杆接头的疲劳行为进行了研究。根据钻杆接头的受力特征设计了疲劳试样,采用PQ–6型旋转弯曲疲劳试验机和扫描电镜研究了应力集中对S135钻杆疲劳性能的影响。结果表明:S135钻杆疲劳性能对V形缺口具有一定的敏感性;缺口根部半径越小,应力集中系数越大,对疲劳性能的影响越严重,应力集中系数和疲劳强度符合幂函数关系;疲劳裂纹从缺口根部开始萌生,存在许多裂纹源(呈环形排列);应力相同时,随着应力集中系数增大,缺口根部的撕裂现象减弱,断口变得光滑、平整,疲劳条纹变得细而密。研究结果表明:对钻杆接头螺纹的牙型进行优化设计,可以降低或减缓齿根的应力集中,降低S135钻杆疲劳对缺口的敏感性,提高S135钻杆的使用寿命。

    Abstract:

    Drill pipe joint fatigue is the main form of drill pipe failure. In order to improve the safety fatigue life of drill pipe, the notch fatigue behavior of S135 drill pipe joint has been studied. The fatigue specimens were designed according to the force characteristics of drill pipe joint, and the influence of stress concentration on the fatigue performance of S135 drill pipe was studied by PQ-6 rotary bending fatigue tester and scanning electron microscope. The results showed that the fatigue of S135 drill pipe exhibited certain sensitivity to the V-notch. The smaller the notch root radius, the larger the stress concentration factor, and the more serious impact on the fatigue performance. The stress concentration factor and the fatigue strength are in accordance with the power function relationship. The process is as follows: the fatigue crack starts from the root of notch, and many sources of cracks existed (in annular arrangement). When the stress is the same, the tearing phenomenon at the root of notch weakens with the increase of stress concentration factor, the fracture becomes smooth and flat, and the fatigue fringes become fine and dense. The research results showed that the optimal design of the drill pipe thread joint could reduce or alleviate the stress concentration of the root, reduce the fatigue sensitivity of S135 drill pipe to the notch, and improve the safety by better mapping the fatigue life of S135 drill pipe.

  • 图  1   钻杆接头疲劳失效位置

    Figure  1.   Fatigue failure position of drill pipe joint

    图  2   光滑试样(单位:mm)

    Figure  2.   Smooth specimen (unit: mm)

    图  3   V形缺口几何特征和参数定义

    Figure  3.   The geometric feature and parameter definition of V-notch

    图  4   缺口试样(单位:mm)

    Figure  4.   Notch specimen (unit: mm)

    图  5   光滑试样的等效应力云图

    Figure  5.   Equivalent stress nephogram of a smooth specimen

    图  6   缺口试样的等效应力云图

    Figure  6.   Equivalent stress map of notched specimen

    图  7   不同应力集中系数Kt下应力升降示意图

    Figure  7.   Schematic diagram of stress fluctuation under different Kt

    图  8   应力集中系数与疲劳强度的关系

    Figure  8.   Relationship between stress concentration factor and fatigue strength

    图  9   不同应力集中程度下的S–N曲线

    Figure  9.   S–N cures at different stress concentration degrees

    图  10   光滑试样在空气中的疲劳断口

    Figure  10.   Fatigue fracture of a smooth specimen in air

    图  11   缺口试样在空气中的疲劳断口(Kt=2.23)

    Figure  11.   Fatigue fracture of notch specimen in air (Kt=2.23)

    图  12   缺口试样在空气中的疲劳断口(Kt=4.11)

    Figure  12.   Fatigue fracture of notch specimen in air (Kt=4.11)

    图  13   Kt=3.01缺口试样在空气中的疲劳断口

    Figure  13.   Fatigue fracture of notch sample in air(Kt=3.01)

    表  1   缺口应力集中对S135钻杆疲劳性能影响的试验方案

    Table  1   Test Scheme for the Influence of Notch Stress Concentration on Fatigue Behavior of S135 Drill Pipe

    组号试样类型H/mmα/(°)R/mmKt环境
    1光滑1.00空气
    2缺口1.0900.14.11空气
    (常温)
    30.23.01
    40.42.23
    50.61.93
     注:Kt为理论应力集中系数,Kt=σmax{\sigma _{\max }}为缺口截面上的最大应力,MPa;\sigma 为缺口截面上的平均应力,MPa[13]
    下载: 导出CSV

    表  2   缺口疲劳系数及缺口敏感性计算结果

    Table  2   Calculation results of notch fatigue coefficient and notch sensitivity

    试样类型\scriptstyle R/mm\scriptstyle K_{\rm{t}}\scriptstyle S_{{\rm{ - 1}}}^{\rm{e}}/ {\rm{MPa}}\scriptstyle K_{\rm{f}}\scriptstyle q
    光滑1.00637.851.000
    缺口0.61.93341.121.870.94
    0.42.23303.012.100.90
    0.23.01237.012.690.84
    0.14.11184.513.460.79
    下载: 导出CSV
  • [1]

    HUANG Bensheng, YANG Jiang, ZHANG Hui, et al. Influence of H2S corrosion on rotating bending fatigue properties of S135 drill pipe steel[J]. Transactions of the Indian Institute of Metals, 2018, 71(1): 1–9. doi: 10.1007/s12666-017-1135-5

    [2]

    ZENG Dezhi, TIAN Gang, HU Junying, et al. Effect of immersion time on the mechanical properties of S135 drill pipe immersed in H2S solution[J]. Journal of Materials Engineering and Performance, 2014, 23(11): 4072–4081. doi: 10.1007/s11665-014-1198-y

    [3]

    OJANOMARE C, CORNETTI P, ROMAGNOLI R A. Fatigue crack growth analysis of drill pipes during rotary drilling operations by the multiple reference state weight function approach[J]. Engineering Failure Analysis, 2017, 74: 11–34. doi: 10.1016/j.engfailanal.2016.12.013

    [4]

    LIU Yonggang, LIAN Zhanghua, LIN Tiejun, et al. A study on axial cracking failure of drill pipe body[J]. Engineering Failure Analysis, 2016, 59: 434–443. doi: 10.1016/j.engfailanal.2015.11.004

    [5]

    ZAMANI S M, HASSANZADEH-TABRIZI S A, SHARIFI H. Failure analysis of drill pipe: a review[J]. Engineering Failure Analysis, 2016, 59: 605–623. doi: 10.1016/j.engfailanal.2015.10.012

    [6]

    LIN Yuanhua, ZHU Dajiang, ZENG Dezhi, et al. Numerical and experimental distribution of stress fields for double shoulder tool joint[J]. Engineering Failure Analysis, 2011, 18(6): 1584–1594. doi: 10.1016/j.engfailanal.2011.06.003

    [7]

    LIN Yuanhua, LI Qiang, SUN Yongxing, et al. A repeated impact method and instrument to evaluate the impact fatigue property of drill pipe[J]. Journal of Materials Engineering & Performance, 2013, 22(4): 1064–1071.

    [8]

    LIN Yuanhua, QI Xing, ZHU Dajiang, et al. Failure analysis and appropriate design of drill pipe upset transition area[J]. Engineering Failure Analysis, 2013, 31(31): 255–267.

    [9] 林元华,潘杰,刘婉颖,等. 硫化氢环境下G–105 和S–135 钻杆的低载多冲疲劳性能测试[J]. 石油钻采工艺, 2016, 38(1): 59–63.

    LIN Yuanhua,PAN Jie,LIU Wanying,et al. Low-load repeated impact testing of G-105 and S-135 drill pipes in H2S environ-ment[J]. Oil Drilling & Production Technology, 2016, 38(1): 59–63.

    [10]

    HAN Yan, ZHAO Xuehu, BAI Zhenquan, et al. Failure analysis on fracture of a S135 drill pipe[J]. Procedia Materials Science, 2014, 3: 447–453. doi: 10.1016/j.mspro.2014.06.075

    [11]

    LU Shuanlu, FENG Yaorong, LUO Faqian, et al. Failure analysis of IEU drill pipe wash out[J]. International Journal of Fatigue, 2005, 27(10/11/12): 1360–1365.

    [12]

    SHATSHATS'KYI I P, LYSKANYCH O M, KORNUTA V A. Combined deformation conditions for fatigue damage indicator and well-drilling tool joint[J]. Strength of Materials, 2016, 48(3): 469–472. doi: 10.1007/s11223-016-9786-8

    [13]

    N'DIAYE A, HARIRI S, PLUVINAGE G, et al. Stress concentration factor analysis for notched welded tubular T-joints[J]. International Journal of Fatigue, 2007, 29(8): 1554–1570. doi: 10.1016/j.ijfatigue.2006.10.030

    [14]

    ZUCUNI C P, GUILARDI L F, FRAGA S, et al. CAD/CAM machining vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: effects on their mechanical fatigue behavior[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 201–208. doi: 10.1016/j.jmbbm.2017.03.013

    [15]

    FRAGA S, PEREIRA G K R, FREITAS M A, et al. Loading frequencies up to 20 Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61: 79–86. doi: 10.1016/j.jmbbm.2016.01.008

    [16]

    WAN Aoshuang, XIONG Junjiang, LYU Zhiyang, et al. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1405–1413. doi: 10.1016/j.cja.2016.01.009

    [17]

    EWEST D, ALMROTH P, SJODIN B, et al. A modified compliance method for fatigue crack propagation applied on a single edge notch specimen[J]. International Journal of Fatigue, 2016, 92(1): 61–70.

    [18] 束德林. 工程材料力学性能[M]. 3版. 北京: 机械工业出版社, 2017.

    SHU Delin. Mechanical properties of engineering materials[M]. 3rd ed. Beijing: Mechanical Industry Press, 2017.

  • 期刊类型引用(11)

    1. 赵小光,胡东伟,李媛,董春,翁华涛. 超低渗砂岩储层深穿透缓速解堵增注工艺. 化学工程师. 2024(04): 90-94+21 . 百度学术
    2. 孙亚东,杨立,李新亮. 高温酸化杂化胶凝剂的研制与性能评价. 油田化学. 2023(02): 223-228 . 百度学术
    3. 兰健,戴姗姗,戴元梅,陈楠,鲁红升. 耐高温酸液稠化剂的合成与性能评价. 油田化学. 2023(04): 636-642 . 百度学术
    4. 李朋,赖小娟,王磊,李鹏,高进浩,张小鑫,刘贵茹. 一种耐高温酸液稠化剂的制备及性能. 精细化工. 2022(02): 411-416+432 . 百度学术
    5. 刘坤,曹杰,焦克波,李永寿. 缓释酸体系的研究进展. 精细石油化工. 2022(01): 68-73 . 百度学术
    6. 邢沛东,卓兴家,曹广胜,张宁,赵小萱. 岩石的酸化敏感性微观机理研究. 当代化工. 2022(08): 1803-1806+1870 . 百度学术
    7. 魏向阳,王磊,赖小娟,苗林,王婷婷,党志强. 耐高温疏水缔合型酸液稠化剂的合成与性能. 石油化工. 2022(10): 1211-1217 . 百度学术
    8. 张伟,任登峰,李富荣,刘爽,王艳,王桥,白文路. 一种耐高温酸液稠化剂的研制. 钻采工艺. 2022(06): 129-133 . 百度学术
    9. 曹广胜,李哲,隋雨,白玉杰,王大業. S区碳酸盐岩耐高温酸压酸液体系优选及性能评价. 石油化工高等学校学报. 2020(05): 48-53 . 百度学术
    10. 王丽伟,石阳,高莹,韩秀玲,王燕. 我国油气藏增产酸液体系的发展历程及进展. 河南化工. 2019(07): 3-6 . 百度学术
    11. 白建文,陶秀娟,韩红旭,朱李安,杨超,翟晓鹏,郭志阳. 苏里格气田东区碳酸盐岩储层酸压用单剂稠化酸. 天然气工业. 2019(12): 88-94 . 百度学术

    其他类型引用(3)

图(13)  /  表(2)
计量
  • 文章访问数:  12075
  • HTML全文浏览量:  6377
  • PDF下载量:  107
  • 被引次数: 14
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-12-12
  • 网络出版日期:  2019-01-16
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回