Equivalent Capillary-Based Liquid Phase Invasion Model for Low Permeability Gas Reservoirs
-
摘要:
为了从微观尺度上探讨低渗透气藏液相侵入微观流动机理,采用激光刻蚀技术建立了致密砂岩孔隙网络模型,开展了液相侵入微观可视化流动实验,分析了液相侵入和流体返排过程孔隙网络内水相的动态分布;建立了基于等效毛细管束的低渗透气藏液相侵入微观流动模型,采用致密砂岩水相自吸侵入实验验证了模型的可行性。实验发现,孔隙网络内水相侵入与毛细管力侵入规律类似,初期液相主要沿着较大孔隙流动,液相通过与孔隙连通的喉道逐渐推进;较小喉道中的水相难以返排,阻碍气相的流动。研究结果表明,黏滞阻力对致密砂岩水相侵入起主导作用,但在负压差条件下,液相仍能侵入岩心,且岩石越致密,水相最大侵入深度越大。建立的液相侵入模型为低渗透气藏液相侵入损害及保护机理研究提供了理论参考。
Abstract:The goal of this study was to avoid formation damage by finding a better way to map the flow of fluids through pore networks in tight sandstones. In order to investigate the flow mechanism of liquid phase invasion in low permeability gas reservoirs from the microscopic scale, a pore network model of tight sandstone was established by using laser etching technology. In that way, the microscopic visualization flow experiment of liquid phase invasion was carried out, and the dynamic aqueous phase distribution in the pore network during the process and fluid flow back was analyzed. The liquid phase invasion microscopic flow model for low permeability gas reservoirs was established based on equivalent capillary beam, and the model was verified by aqueous phase self-absorption invasion experiment in tight sandstone. Experimental results showed that the rule of aqueous phase invasion in the pore network is similar to that of capillary force invasion. The liquid phase mainly flows through larger pores initially, and then advances through the throats communicating with the pores gradually; It is difficult for the aqueous phase in the smaller throat to flow back, which can hinder the flow of gas phase. The research suggested that viscous drag plays a dominant role in the invasion of aqueous phase in tight sandstone; the liquid phase can still invade the core under negative pressure difference. Further, the denser the rock, the greater the maximum invasion depth of aqueous phase would be. The established liquid phase invasion model will provide a theoretical reference in studying liquid phase invasion damage and protection mechanism of low permeability gas reservoirs.
-
Keywords:
- low permeability gas reservoirs /
- pore network /
- liquid invasion /
- flowmodel /
- microscopic mechanism
-
-
-
[1] 李皋, 蔡武强, 孟英峰, 等. 不同钻井方式对致密砂岩储层损害评价实验[J]. 天然气工业, 2017, 37(2): 69–76 http://d.old.wanfangdata.com.cn/Periodical/trqgy201702009 LI Gao, CAI Wuqiang, MENG Yingfeng, et al. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs[J]. Natural Gas Industry, 2017, 37(2): 69–76 http://d.old.wanfangdata.com.cn/Periodical/trqgy201702009
[2] 杨旭, 孟英峰, 李皋, 等. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016 YANG Xu, MENG Yingfeng, LI Gao, et al. Productivity analysis of tight sandstone gas reservoirs considering water blocking dama-ge[J]. Natural Gas Geoscience, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016
[3] 蒋官澄, 王晓军, 关键, 等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014 JIANG Guancheng, WANG Xiaojun, GUAN Jian, et al. The quantitative prediction method of water blocking damage in low and extra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014
[4] 蒋官澄, 张弘, 吴晓波, 等. 致密砂岩气藏润湿性对液相圈闭损害的影响[J]. 石油钻采工艺, 2014, 36(6): 50–54 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201406016 JIANG Guancheng, ZHANG Hong, WU Xiaobo, et al. Effect of tight sandstone gas reservoir wettability on liquid traps damage[J]. Oil Drilling & Production Technology, 2014, 36(6): 50–54 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201406016
[5] 张益, 李军刚, 佟晓华, 等. 基于神经网络信息融合技术预测气藏水锁[J]. 特种油气藏, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029 ZHANG Yi, LI Jungang, TONG Xiaohua, et al. Prediction of water lock in gas reservoirs based on neural network information fusion[J]. Special Oil & Gas Reservoirs, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029
[6] 韦青, 李治平, 白瑞婷, 等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019 WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019
[7] LI Gao, REN Wenxi, MENG Yingfeng, et al. Micro-flow kinetics research on water invasion in tight sandstone reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 20: 184–191 doi: 10.1016/j.jngse.2014.06.024
[8] 赵宏波, 贾进孝, 孟令涛, 等. 一种新型降水锁洗井液NDF–1的性能评价及现场试验[J]. 石油钻探技术, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016 ZHAO Hongbo, JIA Jinxiao, MENG Lingtao, et al. Performance evaluation and field application of a novel water lock reducing flushing fluid DNF-1[J]. Petroleum Drilling Techniques, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016
[9] 唐洪明, 徐诗雨, 王茜, 等. 克拉苏气田超致密砂岩气储层水锁损害[J]. 断块油气田, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023 TANG Hongming, XU Shiyu, WANG Xi, et al. Water blocking damage of hyper-tight sandstone gas reservoir in Kelasu Gas Field[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023
[10] 徐新丽. 东风港油田特低渗透油藏微观孔隙结构及渗流特征试验研究[J]. 石油钻探技术, 2017, 45(2): 96–100 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702016 XU Xinli. Experimental study on micro-pore structure and seepage characteristics of ultra-low permeability reservoirs in the Dongfeng-gang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 96–100 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702016
[11] 赖南君, 叶仲斌, 刘向君, 等. 低渗透致密砂岩气藏水锁损害室内研究[J]. 天然气工业, 2005, 25(4): 125–127 doi: 10.3321/j.issn:1000-0976.2005.04.040 LAI Nanjun, YE Zhongbin, LIU Xiangjun, et al. In-house study on water locking damage of tight sand gas reservoirs with low permeability[J]. Natural Gas Industry, 2005, 25(4): 125–127 doi: 10.3321/j.issn:1000-0976.2005.04.040
[12] 刘建坤, 郭和坤, 李海波, 等. 低渗透储层水锁伤害机理核磁共振实验研究[J]. 西安石油大学学报(自然科学版), 2010, 25(5): 46–49, 53 doi: 10.3969/j.issn.1673-064X.2010.05.011 LIU Jiankun, GUO Hekun, LI Haibo, et al. Experimental study on the water-blocking damage mechanism of low permeability reservoir by nuclear magnetic resonance[J]. Journal of Xi′an Shiyou University (Natural Science Edition), 2010, 25(5): 46–49, 53 doi: 10.3969/j.issn.1673-064X.2010.05.011
[13] 唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学: 技术科学, 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm TANG Hongming, ZHU Baiyu, WANG Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir[J]. Scientia Sinica (Technologica), 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm
[14] 丁绍卿, 郭和坤. 应用核磁共振技术研究压裂液伤害机理[J]. 钻井液与完井液, 2006, 23(3): 60–62 doi: 10.3969/j.issn.1001-5620.2006.03.018 DING Shaoqing, GUO Hekun. Research on the damage mechanism of fracturing fluids through nuclear magnetic resonance technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(3): 60–62 doi: 10.3969/j.issn.1001-5620.2006.03.018
[15] 汪传磊. 致密砂岩孔隙介质内水相侵入微观流动机理研究[D]. 成都: 西南石油大学, 2012. WANG Chuanlei. The study of microscopic flow mechanism of water invading tight sandstone porous media[D]. Chengdu: Southwest Petroleum University, 2012.
[16] FRIES N, DREYER M. The transition from inertial to viscous flow in capillary rise[J]. Journal of Colloid and Interface Science, 2008, 327(1): 125–128 doi: 10.1016/j.jcis.2008.08.018
[17] QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533–538 doi: 10.1209/epl/i1997-00389-2
[18] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329–340 doi: 10.1306/10240808059
[19] 谢晓永. 致密砂岩气藏欠平衡钻井储层保护适应性评价体系研究[D]. 成都: 西南石油大学, 2010. XIE Xiaoyong. Study on formation protection suitability evaluation system of underbalanced drilling in tight sandstone gas reservoir[D]. Chengdu: Southwest Petroleum University, 2010.
-
期刊类型引用(2)
1. 笱顺超,杨顺智,王飞,刘俊,王斌,袁晓琪. 苏里格西区含水气藏识别方法研究. 内蒙古石油化工. 2024(07): 102-105+116 . 百度学术
2. 刘昊年,刘成川,黎华继,马增彪. 川西坳陷东坡低电阻率储层特征及主控因素. 天然气技术与经济. 2017(06): 1-3+8+81 . 百度学术
其他类型引用(0)