随钻高分辨率电阻率成像仪器探测特性研究

倪卫宁, 康正明, 路保平, 柯式镇, 李新, 李铭宇

倪卫宁, 康正明, 路保平, 柯式镇, 李新, 李铭宇. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114-119. DOI: 10.11911/syztjs.2019005
引用本文: 倪卫宁, 康正明, 路保平, 柯式镇, 李新, 李铭宇. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114-119. DOI: 10.11911/syztjs.2019005
NI Weining, KANG Zhengming, LU Baoping, KE Shizhen, LI Xin, LI Mingyu. The Detection Characteristics of a High Resolution Resistivity Imaging Instrument while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114-119. DOI: 10.11911/syztjs.2019005
Citation: NI Weining, KANG Zhengming, LU Baoping, KE Shizhen, LI Xin, LI Mingyu. The Detection Characteristics of a High Resolution Resistivity Imaging Instrument while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114-119. DOI: 10.11911/syztjs.2019005

随钻高分辨率电阻率成像仪器探测特性研究

基金项目: 国家科技重大专项“低渗透储层高精度随钻成像技术研究”(编号:2016ZX05021-002)资助
详细信息
    作者简介:

    倪卫宁(1979—),男,安徽黄山人,2000年毕业于石油大学(华东)应用电子技术专业,2003年获石油大学(华东)控制理论与控制工程专业硕士学位,2006年获中国科学院半导体研究所微电子学与固体电子学专业博士学位,副研究员,主要从事井下智能、随钻测控技术研究。E-mail:niwn.sripe@sinopec.com

    通讯作者:

    康正明,kzm991430414@sina.cn

  • 中图分类号: P631.3+3

The Detection Characteristics of a High Resolution Resistivity Imaging Instrument while Drilling

  • 摘要:

    针对现有随钻电阻率成像仪器周向钮扣电极分布少的问题,设计了一种新的钮扣电极分布方案。该仪器周向排布8个圆形钮扣电极,纵向分为2排,且每排钮扣电极直径不同,既能在复合钻进时进行全井眼覆盖扫描成像,又能在滑动钻进时获得8个扇区固定方位的井眼图像;建立了复杂的水平层状地层、含周向异常体地层和水平井地层等3种地层模型,利用有限元方法分析了仪器在不同地层模型中的测井响应特征。分析结果表明:该仪器具有较好的纵向分辨率,钮扣电极的纵向分辨率与其直径相当,可以准确识别方位性高阻地层;水平井地层界面对仪器不同方位测量的影响不同,侧向测量模式在地层界面处的响应与电缆侧向测井类似。该仪器在复杂地层中具有较好的适用性,研究结果对随钻电阻率成像仪器的研发和数据解释具有指导作用。

    Abstract:

    Focusing on the problem of low distribution of circumferential imaging electrodes in existing resistivity imaging instruments while drilling, a new instrument imaging electrode distribution scheme was designed. The new instrument arranges 8 circular imaging electrodes in the circumferential direction. They are placed in 2 rows in the longitudinal direction, and each row of imaging electrodes has different diameters. In this configuration, it is possible that it can not only perform full wellbore coverage scan imaging during composite drilling, but also obtain the borehole images of 8 sectors with fixed orientation during slide drilling. Taking that into consideration, the complex horizontal layered strata, strata with circumferential anomalous bodies and horizontal well stratigraphic models were established, and analyzed the logging response and laws of the instrument in different stratigraphic models by using finite element method. The analysis results showed that this instrument had good longitudinal resolution, the longitudinal resolution of the imaging electrode was equivalent to its diameter, which could identify the azimuthal strata with high resistivity accurately; the horizontal well strata interface had different effects on the various orientation measurements of this instrument. Further, the response of lateral measurement mode at the strata interface was similar to that of cable lateral logging. The instrument scheme has good applicability in complex strata, and in the future, the research results could be used to guide instrument development and data interpretation.

  • 图  1   发射螺绕环等效为理想化磁环示意

    Figure  1.   Schematic of a launching spiral ring that is equivalent to the idealized magnetic ring

    图  2   仪器结构示意

    Figure  2.   Structure of the instrument

    图  3   源距对测量电流的影响

    Figure  3.   Effect of source distance on measured current

    图  4   钮扣电极直径对测量电流的影响

    Figure  4.   Effect of button electrode diameter on measured current

    图  5   测井仪器在水平层状地层的测井响应

    Figure  5.   Logging response of the logging instrument in horizontally layered strata

    图  6   含方向性异常体的地层模型

    Figure  6.   Stratigraphic model with directional anomalous bodies

    图  7   钮扣电极视电阻率与异常体张开角度的关系曲线

    Figure  7.   The relationship curve between the apparent resistivity of the button electrode and the anomalous body opening angle

    图  8   深侧向与钻头视电阻率与异常体张开角度的关系曲线

    Figure  8.   The relationship curve between the apparent resistivity of deep laterolog/bit and the anomalous body opening angle

    图  9   水平井数值模拟模型示意

    Figure  9.   The model of horizontal well numerical simulation

    图  10   钮扣电极测量的视电阻率与仪器距地层界面距离的关系曲线

    Figure  10.   The relationship curve between the apparent resistivity measured by the buttonelectrode and the distance of the instrument to strata interface

    图  11   侧向、钻头测量的视电阻率与仪器距地层界面距离的关系曲线

    Figure  11.   The relationship curve between the apparent resistivity measured by the laterolog/bit and the distance of the instrument to strata interface

    表  1   水平层状地层模型参数

    Table  1   The model parameters of horizontally layered strata

    编号纵向坐标/m地层厚度/m地层电阻率/(Ω·m)
    1–100.000100.00010
    200.005100
    30.0050.00510
    40.0100.010100
    50.0200.01010
    60.0300.020100
    70.0500.02010
    80.0700.040100
    90.1100.04010
    100.1500.060100
    110.2100.06010
    120.2700.080100
    130.3500.08010
    140.43099.57010
    下载: 导出CSV
  • [1] 张辛耘, 王敬农, 郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002

    [2] 杨震, 肖红兵, 李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术, 2017, 45(4): 115–120.

    YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120.

    [3] 杨世夺, 雷霄, 蔡军, 等. 随钻电阻率成像测井在北部湾碳酸盐岩储层中的综合应用[J]. 测井技术, 2010, 34(2): 177–182. doi: 10.3969/j.issn.1004-1338.2010.02.017

    YANG Shiduo, LEI Xiao, CAI Jun, et al. Integrated solution of LWD resistivity image logging in carbonate reservoir in Beibu Gulf, China[J]. Well Logging Technology, 2010, 34(2): 177–182. doi: 10.3969/j.issn.1004-1338.2010.02.017

    [4] 李安宗, 李启明, 朱军, 等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006

    LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006

    [5] 林楠. 随钻电阻率成像技术在页岩气压裂评价中的应用[J]. 录井工程, 2015, 26(2): 16–20. doi: 10.3969/j.issn.1672-9803.2015.02.004

    LIN Nan. LWD resistivity imaging technology in the evaluation of shale gas fracturing[J]. Mud Logging Engineering, 2015, 26(2): 16–20. doi: 10.3969/j.issn.1672-9803.2015.02.004

    [6] 王邦伟, 张树东, 吉人, 等. 高分辨率随钻电阻率成像测井在四川盆地碳酸盐岩储层的应用[J]. 测井技术, 2017, 41(3): 358–363.

    WANG Bangwei, ZHANG Shudong, JI Ren, et al. Application of microscope high resolution LWD resistivity image logging in carbonate reservoirs in Sichuan Basin[J]. Well Logging Technology, 2017, 41(3): 358–363.

    [7]

    ALLOUCHE M, CHOW S, DUBOURG I, et al. High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R]. SPE 131513, 2010.

    [8]

    ORTENZI L, DUBOURG I, van OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3): 197–207.

    [9]

    PRAMMER M G, MORYS M, KNIZHNIK S, et al. Field testing of an advanced LWD imaging resistivity tool[R]. SPWLA-2007-AA, 2007.

    [10]

    PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool-field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1): 49–66.

    [11]

    RITTER R N, CHEMALI R, LOFTS J, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[R]. SPWLA-2004-PP, 2004.

    [12]

    AKIMOV O, BAULE A, FULDA C, et al. Real-time imaging while drilling: US7272504[P]. 2007–09–18.

    [13]

    FULDA C, HARTMANN A, GOREK M. High resolution electrical imaging while drilling[R]. SPWLA-2010-46830, 2010.

    [14]

    ARPS J. J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771[P]. 1967–02–21.

    [15]

    GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.

    [16] 康正明, 柯式镇, 李新, 等. 钻头电阻率测井仪器探测特性研究[J]. 石油科学通报, 2017, 2(4): 457–465.

    KANG Zhengming, KE Shizhen, LI Xin, et al. The detection characteristics study of the at-bit resistivity logging tool[J]. Petroleum Science Bulletin, 2017, 2(4): 457–465.

    [17] 李铭宇, 柯式镇, 康正明, 等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术, 2018, 46(1): 128–134.

    LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.

    [18]

    WANG H M, SHEN L C, ZHANG G J. Dual laterolog response in 3-D environments[R]. SPWLA-1998-X, 1998.

  • 期刊类型引用(4)

    1. 朱和明,杨德锴,李渭亮,张亚洲,徐慧. 完井—采油一体化工艺及关键技术分析. 钻采工艺. 2021(02): 76-80 . 百度学术
    2. 喻冰. 裸眼分段压裂无限级全通径滑套工具新进展. 钻采工艺. 2020(S1): 68-71+4 . 百度学术
    3. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
    4. 刘言理. 水平井筛管分段喷射解卡工具研制与试验. 石油钻探技术. 2018(03): 65-71 . 本站查看

    其他类型引用(2)

图(11)  /  表(1)
计量
  • 文章访问数:  13213
  • HTML全文浏览量:  6298
  • PDF下载量:  111
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-11-28
  • 网络出版日期:  2019-01-16
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回