压实与嵌入作用下压裂裂缝导流能力模型建立与影响因素分析

陈冬, 王楠哲, 叶智慧, 张佳亮

陈冬, 王楠哲, 叶智慧, 张佳亮. 压实与嵌入作用下压裂裂缝导流能力模型建立与影响因素分析[J]. 石油钻探技术, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148
引用本文: 陈冬, 王楠哲, 叶智慧, 张佳亮. 压实与嵌入作用下压裂裂缝导流能力模型建立与影响因素分析[J]. 石油钻探技术, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148
CHEN Dong, WANG Nanzhe, YE Zhihui, ZHANG Jialiang. Propped Fracture Conductivity Evolution under a Combination of Compaction and Embedment: Establishing a Model and Analyzing the Influencing Factors[J]. Petroleum Drilling Techniques, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148
Citation: CHEN Dong, WANG Nanzhe, YE Zhihui, ZHANG Jialiang. Propped Fracture Conductivity Evolution under a Combination of Compaction and Embedment: Establishing a Model and Analyzing the Influencing Factors[J]. Petroleum Drilling Techniques, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148

压实与嵌入作用下压裂裂缝导流能力模型建立与影响因素分析

基金项目: 

国家自然科学基金青年科学基金项目"考虑支撑剂压实和嵌入双重作用的压裂裂隙渗透率模型研究"(编号:51604283)、国家自然科学基金国际(地区)合作与交流项目"共采过程中致密气、页岩气、煤层气三气运移机理"(编号:51811530306)和油气资源与探测国家重点实验室开放课题基金项目"非常规储层渗透率各向异性特性研究"(编号:z2018096)资助。

详细信息
    作者简介:

    陈冬(1981-),男,河北张家口人,2005年毕业于天津城建大学土木工程专业,2008年获中国矿业大学(北京)岩土工程专业硕士学位,2013年获西澳大利亚大学石油与天然气工程专业博士学位,副教授,硕士研究生导师,主要从事非常规天然气开发、多场耦合仿真、智能钻井和石油工程共享AI与云计算等方面的研究。

    王楠哲: E-mail:dong.chen@cup.edu.cn。

  • 中图分类号: TE357

Propped Fracture Conductivity Evolution under a Combination of Compaction and Embedment: Establishing a Model and Analyzing the Influencing Factors

  • 摘要: 为了研究支撑剂压实与嵌入双重作用下压裂裂缝导流能力的变化规律,基于孔隙压缩性理论与固体接触理论,建立了考虑压实与嵌入双重作用的压裂裂缝导流能力模型,利用建立的模型对前人的压裂裂缝导流能力实验数据进行了拟合,并对模型参数分布规律及其影响因素进行了讨论分析。研究发现,该模型可以较好地描述压实与嵌入双重作用下压裂裂缝导流能力的变化规律;支撑剂充填层初始孔隙体积压缩系数体现了支撑剂充填层孔隙的压缩性,其值越大,压裂裂缝导流能力变化越大;支撑剂充填层初始孔隙体积压缩系数变化率的绝对值越大,压缩系数变化越大。研究认为,压实与嵌入双重作用下压裂裂缝导流能力模型可以预测压裂裂缝导流能力及其变化规律。
    Abstract: In order to study the variation laws of hydraulic fracture conductivity under dual action of proppant compaction and embedment,a model of propped fracture conductivity considering combined effect of compaction and embedment was constructed.The model built on on pore compressibility theory and solid contact theory, which were also used to fit the data obtained from previous hydraulic fracture conductivity experiments.The distribution laws and influencing factors on model parameters were also discussed. The results show that the model presented here can reasonably describe the variation laws of propped fracture conductivity under the dual action of proppant compaction and embedment.The compressibility coefficient of original pore volume reveals the pore compressibility of the proppant layer.The higher compressibility coefficient will present greater variation of fracture conductivity.Larger variation of the absolute compressibility coefficient of original pore volume leads to greater change of the compressibility coefficient.The established model of hydraulic fracture conductivity under the combined compaction and embedment provides the theoretical basis for forecasting the variation laws of hydraulic fracture conductivity.
  • [1] 张东晓,杨婷云.页岩气开发综述[J].石油学报,2013,34(4):792-801.

    ZHANG Dongxiao,YANG Tingyun.An overview of shale gas production[J].Acta Petrolei Sinica,2013,34(4):792-801.

    [2] 金智荣,郭建春,赵金洲,等.复杂条件下支撑裂缝导流能力实验研究与分析[J].石油天然气学报,2007,29(3):284-287.

    JIN Zhirong,GUO Jianchun,ZHAO Jinzhou,et al.Experimental study and analyses on flow conductivity of fracture proppant under extreme conditions[J].Journal of Oil and Gas Technology,2007,29(3):284-287.

    [3] 金智荣,郭建春,赵金洲,等.支撑裂缝导流能力影响因素实验研究与分析[J].钻采工艺,2007,30(5):36-38

    ,41. JIN Zhirong,GUO Jianchun,ZHAO Jinzhou,et al.Experimental study and analysis for the influence factors on flow conductivity of fracture proppants[J].Drilling & Production Technology,2007,30(5):36-38,41.

    [4] 毕文韬,沈雅婷,卢拥军,等.地层应力波动对支撑缝缝导流能力的影响[J].石油钻采工艺,2015,37(6):78-80.

    BI Wentao,SHEN Yating,LU Yongjun,et al.Effect of reservoir stress fluctuation on conductivity of propped fractures[J].Oil Drilling & Production Technology,2015,37(6):78-80.

    [5] 蒋建方,张智勇,胥云,等.液测和气测支撑裂缝导流能力室内实验研究[J].石油钻采工艺,2008,30(1):67-70.

    JIANG Jianfang,ZHANG Zhiyong,XU Yun,et al.Laboratory research on propping fracture conductivity based on gas logging and liquid logging[J].Oil Drilling & Production Technology,2008,30(1):67-70.

    [6]

    WEN Qingzhi,ZHANG Shicheng,WANG Lei,et al.The effect of proppant embedment upon the long-term conductivity of fractures[J].Journal of Petroleum Science and Engineering, 2007,55(3/4):221-227.

    [7] 刘岩,张遂安,石惠宁,等.支撑剂嵌入不同坚固性煤岩导流能力实验研究[J].石油钻采工艺,2013,35(2):75-78.

    LIU Yan,ZHANG Suian,SHI Huining,et al.Experimental research on flow conductivity of different firmness coal rock embedded by proppant[J].Oil Drilling & Production Technology,2013,35(2):75-78.

    [8]

    KASSIS S,SONDERGELD C H.Fracture permeability of gas shale:effects of roughness, fracture offset,proppant,and effective stress[R].SPE 131376,2010.

    [9]

    CHEN Dong,PAN Zhejun,YE Zhehui,et al.A unified permeability and effective stress relationship for porous and fractured reservoir rocks[J].Journal of Natural Gas Science and Engineering,2016,29:401-412.

    [10]

    CHEN Dong,YE Zhihui,PAN Zhijun,et al.A permeability model for the hydraulic fracture filled with proppant packs under combined effect of compaction and embedment[J].Journal of Petroleum Science and Engineering,2017,149:428-435.

    [11]

    CIPOLLA C.L,WILLIAMS M.J,WENG X,et al.Hydraulic fracture monitoring to reservoir simulation:maximizing value[R].SPE 133877,2010.

    [12]

    KHANNA A,KOTOUSOV A,SOBEY J,et al.Conductivity of narrow fractures filled with a proppant monolayer[J].Journal of Petroleum Science and Engineering,2012,100:9-13.

    [13]

    DENG Shouchun,LI Haibo,MA Guowei,et al.Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method[J].International Journal of Rock Mechanics and Mining Sciences,2014,70:219-228.

    [14]

    OLIVER W C, PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.

    [15]

    CHEN Dong,SHI Jiquan,DURUCAN S,et al.Gas and water relative permeability in different coals:model match and new insights[J].International Journal of Coal Geology,2014,122:37-49.

    [16]

    BROWN A M.A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet[J].Computer Methods and Programs in Biomedicine, 2001,65(3):191-200.

    [17] 朱文,朱华银.支撑剂裂缝渗透率差异及其优质问题对压裂后经济净现值的影响[J].石油钻采工艺,1996,18(4):85-89.

    ZHU Wen,ZHU Huayin.Permeability discrepancy of proppant fracture and its effect on economic net present value after fracturing[J].Oil Drilling & Production Technology,1996,18(4):85-89.

    [18]

    SUAREZ-RIVERA R,BURGHARDT J,EDELMAN E,et al.Geomechanics considerations for hydraulic fracture productivity[R].ARMA-2013-666,2013.

  • 期刊类型引用(4)

    1. 赵振峰,王德玉,王广涛. 石英砂支撑剂长期导流能力变化规律实验研究. 钻采工艺. 2022(02): 72-77 . 百度学术
    2. 梁天成,才博,蒙传幼,朱兴旺,刘云志,陈峰. 水力压裂支撑剂性能对导流能力的影响. 断块油气田. 2021(03): 403-407 . 百度学术
    3. 吴峙颖,路保平,胡亚斐,蒋廷学. 压裂多级裂缝内动态输砂物理模拟实验研究. 石油钻探技术. 2020(04): 106-110 . 本站查看
    4. 徐启,周晓峰. 受压状态下水力压裂支撑剂性能评价方法. 大庆石油地质与开发. 2020(05): 51-57 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  7807
  • HTML全文浏览量:  136
  • PDF下载量:  28
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-05-10
  • 修回日期:  2018-10-17

目录

    /

    返回文章
    返回