排液采气涡流工具结构参数优化实验研究

周朝, 吴晓东, 张同义, 赵旭

周朝, 吴晓东, 张同义, 赵旭. 排液采气涡流工具结构参数优化实验研究[J]. 石油钻探技术, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142
引用本文: 周朝, 吴晓东, 张同义, 赵旭. 排液采气涡流工具结构参数优化实验研究[J]. 石油钻探技术, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142
ZHOU Chao, WU Xiaodong, ZHANG Tongyi, ZHAO Xu. Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142
Citation: ZHOU Chao, WU Xiaodong, ZHANG Tongyi, ZHAO Xu. Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142

排液采气涡流工具结构参数优化实验研究

基金项目: 

国家科技重大专项"高压低渗油气藏固井完井技术"(编号:2016ZX05021-005)、"海相碳酸盐岩超深油气井关键工程技术"(编号:2017ZX05005-005)和中国石化科技攻关项目"凝析气藏水平井自适应调流控水完井技术研究"(编号:P18068)资助。

详细信息
    作者简介:

    周朝(1988-),男,河北保定人,2010年毕业于东北石油大学石油工程专业,2017年获中国石油大学(北京)油气田开发工程专业博士学位,助理研究员,主要从事采油采气工程和完井工程技术研究。

    吴晓东: E-mail:zhouchao-joe@163.com。

  • 中图分类号: TE377

Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery

  • 摘要: 目前对涡流排液采气的机理认识不清,且鲜有分析涡流工具结构参数对排液效果的影响方面的研究报道,无法有效指导现场应用。为此,基于相似原理建立了涡流排液采气物理模拟实验装置,测试了安装不同涡流工具后的井筒压降和流量,分析了涡流工具螺旋流道宽度、流道两侧密封性和螺旋角对排液效果的影响;选取了排液最优的涡流工具并测试了临界携液流量;同时,根据两相流体动力学理论建立了最优螺旋角理论模型。实验发现:涡流工具螺旋流道两侧有效密封、并在井筒压降较小的前提下,缩小螺旋流道的流动截面可以提高涡流工具的排液效果;实验最优螺旋角为45°,与理论模型计算结果吻合较好;使用优化后的涡流工具井筒压降降幅约为9.6%,排液量约提高12.4%,临界携液流量约降低20%。研究结果表明,优化后的涡流工具增强了排液能力,最优螺旋角理论模型结果可靠,可为涡流工具设计和现场应用提供理论指导。
    Abstract: Mechanistic studies of vortex drainage gas recovery are insufficient and cannot effectively create guidelines for field application.What is lacking is an analysis that aims to research the influence of the structure parameters of the vortex tool on the drainage effect.Therefore,based on the theory of similarity,physical simulation experiments were designed and the experimental facilities were set up.Then impact of installing the vortex tool were examines,namely the wellbore pressure drop and the flow rate curves.Later,the influences of helical flow channel scale,sealing on both sides of flow channel and helix angle of vortex tool on the drainage effect were analyzed.It was possible then to determine the critical flow rate after installing the optimized vortex tool.The theoretical model for calculating the optimal helical angle was established based on the two-phase fluid dynamic theory.The experiment showed that the drainage effect of vortex tools could be improve while enhancing the leak-tightness and decreasing the size of the flow channel under the conditions of low wellbore pressure drop.The experimental optimal helix angle was 45°,which was in good agreement with the results of the theoretical model;after installing the optimized vortex tool,the wellbore pressure drop would decrease by about 9.6%,the liquid flow rate would increase by about 12.4%,and the critical flow rate would decrease by about 20%.The optimized vortex tool enhanced the drainage capability and the results of optimal theoretical model for helix angle were reliable,thus providing theoretical guidance for design and field application of the vortex tool.
  • [1]

    SIMPSON D A.Vortex flow technology finding new applications[J].Rocky Mountain Oil Journal,2003,83(45):4-5.

    [2] 陈德春,付刚,韩昊,等.气井携液用涡流工具结构参数优化[J].石油钻采工艺,2016,38(3):400-404.

    CHEN Dechun,FU Gang,HAN Hao,et al.Optimization of structural parameters for fluid-carrying swirl tool in gas wells[J].Oil Drilling & Production Technology,2016,38(3):400-404.

    [3]

    ALI A J,SCOTT S L,FEHN B.Investigation of new tool to unload liquids from stripper-gas wells[J].SPE Production & Facilities,2005,20(4):306-316.

    [4]

    SINGH K A,SARKAR P,PRALEYA P,et al.Unconventional cyclone gas lift completion for offshore wells of Cambay Basin:a smart completion to optimize production and well intervention[R].SPE 181574,2016.

    [5]

    ZHANG Z,LIAO R Q,LIU J.Dynamics and effective distance of gas-liquid two-phase swirling flow induced by vortex tools[J].Advances in Mechanical Engineering,2018,10(9):1-11.

    [6] 杨旭东,卫亚明,肖述琴,等.井下涡流工具排水采气在苏里格气田探索研究[J].钻采工艺,2013,36(6):125-127.

    YANG Xudong,WEI Yaming,XIAO Shuqin,et al.Research of downhole vortex dewatering gas recovery in Sulige Gasfield[J].Drilling & Production Technology,2013,36(6):125-127.

    [7] 周朝,吴晓东,汤敬飞,等.井下涡流排液采气井筒临界携液量计算[J].大庆石油地质与开发,2016,35(6):99-103.

    ZHOU Chao,WU Xiaodong,TANG Jingfei,et al.Calculation of the critical liquid carry-over in the wellbore for downhole vortex dewatering gas recovery[J].Petroleum Geology and Oilfield Development in Daqing,2016,35(6):99-103.

    [8] 陈德春,姚亚,韩昊,等.气井涡流排液采气工具有效作用长度[J].断块油气田,2016,23(4):537-540.

    CHEN Dechun,YAO Ya,HAN Hao,et al.Effective length of vortex tools for liquid discharge in gas wells[J].Fault-Block Oil & Gas Field,2016,23(4):537-540.

    [9] 侯绪田,赵向阳,孟英峰,等.基于真实裂缝试验装置的液液重力置换试验研究[J].石油钻探技术,2018,46(1):30-36.

    HOU Xutian,ZHAO Xiangyang,MENG Yingfeng,et al.Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J].Petroleum Drilling Techniques,2018,46(1):30-36.

    [10] 谢志勤.自蔓燃化学点火火烧油层物理模拟研究[J].石油钻探技术,2018,46(3):93-97.

    XIE Zhiqin.Physical simulation study of in-situ combustion by a chemical self-propagating igniter[J].Petroleum Drilling Techniques,2018,46(3):93-97.

    [11]

    ALI A J.Investigation of flow modifying tools for the continuous unloading of wet-gas wells[D].College Station:Texas A & M University,2003.

    [12]

    BOSE R.Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells[D].College Station:Texas A&M University,2007.

    [13] 杜汶浓.川西气田涡流排水采气工艺技术研究[D].成都:西南石油大学,2015. DU Wennong.Research of vortex gas drainage technology in Western Sichuan Gas Field[D].Chengdu:Southwest Petroleum University,2015.
    [14] 陈德春,韩昊,姚亚,等.气井涡流工具作用效果分析与临界携液流量实验研究[J].天然气地球科学,2015,26(11):2137-2140.

    CHEN Dechun,HAN Hao,YAO Ya,et al.An experimental study on the effect of the vortex tool and its influence on critical velocity[J].Natural Gas Geoscience,2015,26(11):2137-2141.

    [15]

    TURNER R G,HUBBARD M G,DULKER A E.Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J].Journal of Petroleum Technology,1969,21(11):1475-1482.

    [16]

    COLEMAN S B,CLAY H B, McCURDY D G,et al.A new look at predicting gas well load-up[J].Journal of Petroleum Technology,1991,43(3):329-333.

    [17] 李闽,郭平,谭光天.气井携液新观点[J].石油勘探与开发,2001,28(5):105-106.

    LI Min,GUO Ping,TAN Guangtian.New look on removing liquids from gas wells[J].Petroleum Exploration and Development,2001,28(5):105-106.

    [18]

    RICHTER H J.Flooding in tubes and annuli[J].International Journal of Multiphase Flow,1981,7(6):647-658.

    [19] 周朝,吴晓东,刘雄伟,等.深层凝析气井临界携液模型优化研究[J].特种油气藏,2015,22(6):97-100.

    ZHOU Chao,WU Xiaodong,LIU Xiongwei,et al.Study on optimization of critical fluid carrying model for deep condensate gas well[J].Special Oil & Gas Reservoirs,2015,22(6):97-100.

    [20] 吴晓东,周朝,安永生,等.涡流排液采气的液滴动力学分析与螺旋角优化[J].天然气工业,2016,36(5):45-50.

    WU Xiaodong,ZHOU Chao,AN Yongsheng,et al.Dynamic analysis of liquid droplet and optimization of helical angle for vortex drainage gas recovery[J].Natural Gas Industry,2016,36(5):45-50.

    [21] 金向红,金有海,王建军.气液旋流器内液滴破碎和碰撞的数值模拟[J].中国石油大学学报(自然科学版),2010,34(5):114-120,125. JIN Xianghong,JIN Youhai,WANG Jianjun.Numerical simulation on breakup and collision of droplet in gas-liquid cyclone separator[J].Journal of China University of Petroleum(Edition of Natural Science),2010,34(5):114-120,125.
    [22] 郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002:342-345. GUO Liejin.Two-phase and multiphase flow mechanics[M].Xi'an:Xi'an Jiaotong University Press,2002:342

    -345.

  • 期刊类型引用(5)

    1. 丁乙,刘向君,曹雯,周吉羚,梁利喜,熊健,侯连浪. 页岩渗吸过程中的水化损伤演化特征研究. 工程地质学报. 2024(04): 1262-1272 . 百度学术
    2. 金衍,薄克浩,张亚洲,卢运虎. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考. 石油钻探技术. 2023(04): 159-169 . 本站查看
    3. 余海棠,丁乙,刘艳梅,彭妙,梁利喜,余小龙. 考虑水化损伤作用的页岩动态自吸模型. 石油钻探技术. 2023(05): 139-148 . 本站查看
    4. 康东雅,向芳,邹佐元,张萌. 鄂尔多斯盆地上古生界砂岩岩石学特征及岩性差异. 断块油气田. 2019(03): 299-303 . 百度学术
    5. 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术. 石油钻探技术. 2019(02): 21-27 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  7918
  • HTML全文浏览量:  107
  • PDF下载量:  37
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-10-03

目录

    /

    返回文章
    返回