Analysis of the Anti-Gas Channeling Effect and Weight Loss Law of Styrene-Acrylic Latex Cement Slurry
-
摘要:
水泥浆候凝期间,因其失重引发的环空气窜,是导致气井环空带压的重要因素之一,掌握水泥浆失重模式与规律,是预防环空气侵的重要基础。以苯丙胶乳防气窜水泥浆为研究对象,采用压力传导精确测量装置进行了水泥浆失重试验,测量了不同胶乳加量、温度、气压、模拟井筒深度等条件下水泥浆浆柱压力的变化,进行了防气窜效果评价与失重规律分析。试验发现:在气层压力(18 kPa)高于底部浆柱压力(12~16 kPa)的情况下,苯丙胶乳水泥浆依然可有效防止气窜;水泥浆形成触变或胶凝结构后压力快速降低,随着水化反应进行压力缓慢降低,稠化前压力再次加速下降,而气窜应出现在第一拐点附近。基于该研究成果,可对水泥浆的防气窜性能进行评价,以优选出适合高压气井的防气窜水泥浆,并为建立水泥浆失重预测模型提供试验基础。
Abstract:During the WOC of cement slurry, gas channeling in the annulus caused by its weight loss is one of the important factors leading to the sustained casing pressure (SCP). Understanding the weight loss modes and law of cement slurry is an important way to prevent gas intrusion in the annulus. Taking the styrene-acrylic latex anti-gas channeling cement slurry system as the research object, the weight loss test of cement slurry was carried out by means of pressure conduction precision measuring device, and the pressure change data of cement slurry under different latex dosage, temperature, gas pressure and simulated wellbore depth were measured, and the anti-gas channeling effect evaluation and weight loss law analysis were carried out. The test found that the styrene-acrylic latex could still effectively prevent gas channeling when the gas-bearing formation pressure (18 kPa) was higher than the bottom pressure of slurry column (12-16 kPa). In this case, the pressure dropped rapidly after this system formed a thixotropic or gelled structure. As the hydration reaction went on, the pressure decreased slowly, then the pressure of cement slurry dropped rapidly again before the thickening, and the dangerous time of gas channeling should appear near the first inflection point. Based on the research results, the anti-gas channeling performance of cement slurry could be evaluated to select the anti-gas channeling cement slurry system suitable for high-pressure gas wells, and such results could provide test basis for the establishment of cement slurry weight loss prediction model.
-
Keywords:
- cementing /
- anti-gas channeling /
- latex cement slurry /
- weight loss test /
- weight loss model /
- weight loss law
-
-
表 1 苯丙胶乳防气窜水泥浆的综合性能
Table 1 Comprehensive performance of styrene-acrylic latex anti-gas channeling cement slurr
苯丙胶乳加量,% 温度/℃ 流动度/cm 六速旋转黏度计读数 流性指数 稠度系数/(Pa·sn) 滤失量/mL 析水量/mL 5.0 93 24 255/201/128/76/7/4 0.752 0.815 35 0 10.0 93 24 241/195/120/73/8/5 0.717 0.937 26 0 15.0 93 23 238/200/130/80/8/5 0.774 0.727 19 0 20.0 93 22 264/214/165/98/9/6 0.751 1.053 14 0 表 2 苯丙胶乳水泥浆失重试验参数
Table 2 The parameters of styrene-acrylic latex anti-gas channeling cement slurry weight loss test
基本配方 苯丙胶乳加量,% 气压/kPa 温度/℃ 备注 纯水 0 0~18 室温 纯水对比试验 G级水泥+44%水 0 0,15,18 30,50 净浆对比试验 G级水泥+44%水 5~20 0,15,18 30,50 苯丙胶乳加量变化试验 G级水泥+44%水 5,10 4~20 30,50 气压变化试验 G级水泥+44%水 5,10 0,15,18 30~70 温度变化试验 -
[1] 刘崇建, 黄柏宗, 徐同台, 等.油气井注水泥理论与应用[M].北京: 石油工业出版社, 2001: 316-345. LIU Chongjian, HUANG Bozong, XU Tongtai, et al. Theory and application of cementing of oil and gas well[M]. Beijing: Petroleum Industry Press, 2001: 316-345.
[2] CARTER G, SLAGLE K. A study of completion practices to minimize gas communication[J]. Journal of Petroleum Technology, 1972, 24(9): 1170–1174 doi: 10.2118/3164-PA
[3] CROOK R A, HEATHMAN J. Predicting potential gas-flow rates to help determine the best cementing practices[J]. Drilling Contractor, 1998, November/December: 40–43
[4] SABINS F L, TINSLEY J M, SUTTON D L. Transition time of cement slurries between the fluid and set states[J]. SPE Journal, 1982, 22(6): 875–882 doi: 10.2118/9285-PA
[5] SABINS F L, SUTTON D L. The relationship of thickening time, gel strength, and compressive strength of oil well cements[J]. SPE Production Engineering, 1986, 1(2): 143–152 doi: 10.2118/11205-PA
[6] 步玉环,穆海朋,姜林甫,等. 水泥浆失重建模以及实验研究[J]. 钻井液与完井液, 2007, 24(6): 52–54 doi: 10.3969/j.issn.1001-5620.2007.06.014 BU Yuhuan, MU Haipeng, JIANG Linfu, et al. Modeling and laboratory studies of cement slurry weight loss[J]. Drilling Fluid & Completion Fluid, 2007, 24(6): 52–54 doi: 10.3969/j.issn.1001-5620.2007.06.014
[7] BANNISTER C E, LAWSON V M. Role of cement fluid loss in wellbore completion[R]. SPE 14433, 1985.
[8] HARTOG J J, DAVIES D R, STEWART R B. An integrated approach for successful primary cementations[J]. Journal of Petro-leum Technology, 1983, 35(9): 1600–1610 doi: 10.2118/9599-PA
[9] 孙展利. 水泥浆在不同井斜的沉降失重和沉降–胶凝失重[J]. 天然气工业, 1998, 18(4): 55–58 doi: 10.3321/j.issn:1000-0976.1998.04.015 SUN Zhanli. Settling weightlessness and settling jellification weightlessness of slurry under various hole deviations[J]. Natural Gas Industry, 1998, 18(4): 55–58 doi: 10.3321/j.issn:1000-0976.1998.04.015
[10] SYKES R L, LOGAN J L. New technology in gas migration control[R]. SPE 16653, 1987.
[11] ZHOU Desheng, WOJTANOWICZ A K. New model of pressure reduction to annulus during primary cementing[R]. SPE 59137, 2000.
[12] 郭小阳,刘崇建,谢应权,等. 大斜度及水平井中水泥浆的失重和气侵研究[J]. 西南石油学院学报, 1996, 18(2): 25–34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600833058 GUO Xiaoyang, LIU Chongjian, XIE Yingquan, et al. Study of weightlessness and air cutting of cement slurry in highly derivated and horizontal well[J]. Journal of Southwest Petroleum Institute, 1996, 18(2): 25–34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600833058
[13] LI Zichang, VANDENBOSSCHE J, IANNACCHIONE A, et al. Theory-based review of limitations with static gel strength in cement/matrix characterization[R]. SPE 178923, 2016.
[14] 汪晓静,孔祥明,曾敏,等. 新型苯丙胶乳水泥浆体系的室内研究[J]. 石油钻探技术, 2014, 42(2): 80–84 http://d.old.wanfangdata.com.cn/Periodical/syztjs201402016 WANG Xiaojing, KONG Xiangming, ZENG Min, et al. Laboratory research on a new styrene acrylic latex cement slurry system[J]. Petroleum Drilling Techniques, 2014, 42(2): 80–84 http://d.old.wanfangdata.com.cn/Periodical/syztjs201402016
[15] 路飞飞,王永洪,刘云,等. 顺南井区高温高压防气窜尾管固井技术[J]. 钻井液与完井液, 2016, 33(2): 88–91 http://d.old.wanfangdata.com.cn/Periodical/zjyywjy201602019 LU Feifei, WANG Yonghong, LIU Yun, et al. Anti-channeling HTHP Liner Cementing Technologies Used in Block Shunnan[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 88–91 http://d.old.wanfangdata.com.cn/Periodical/zjyywjy201602019
[16] 刘仍光,周仕明,陶谦,等. 胶乳对油井水泥水化产物和硬化浆体微结构的影响[J]. 电子显微学报, 2015, 34(3): 211–215 doi: 10.3969/j.issn.1000-6281.2015.03.006 LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Influence of latex on the hydration products and microstructure of oil well cement pastes[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(3): 211–215 doi: 10.3969/j.issn.1000-6281.2015.03.006
[17] 朱海金,王恩合,王学成,等. 水泥浆防窜性能实验评价及其应用[J]. 天然气工业, 2013, 33(11): 79–85 doi: 10.3787/j.issn.1000-0976.2013.11.014 ZHU Haijin, WANG Enhe, WANG Xuecheng, et al. Experimental evaluation of gas channeling prevention of cement slurries and its application[J]. Natural Gas Industry, 2013, 33(11): 79–85 doi: 10.3787/j.issn.1000-0976.2013.11.014
[18] 张兴国. 水泥浆网架结构胶凝悬挂失重机理研究[D]. 南充: 西南石油大学, 2002. ZHANG Xingguo. Study on weightlessness mechanisms of slurry suspension during cement gelation[D]. Nanchong: Southwest Petro-leum University, 2002.
[19] 程小伟,刘开强,李早元,等. 油井水泥浆液–固态演变的结构与性能[J]. 石油学报, 2016, 37(10): 1287–1292 doi: 10.7623/syxb201610009 CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry liquid-solid transition[J]. Acta Petrolei Sinica, 2016, 37(10): 1287–1292 doi: 10.7623/syxb201610009