渤海人工岛大型丛式井组加密防碰优化设计技术

Anti-Collision Optimization Design Technology for Large-Scale Infill Drilling for Cluster Well Groups in the Artificial Island of the Bohai Sea

  • 摘要: 针对渤海人工岛B岛丛式井组大规模加密调整时,防碰绕障设计难度大、效率低的问题,在分析加密井整体防碰形势及特点的基础上,对已钻井数据进行精确性校准,基于行业标准关于丛式井组平台优化及防碰设计的原则,制定了大规模加密井防碰轨道设计流程,形成了整体优化设计方法,优化了钻井顺序、槽口匹配关系和防碰轨道设计参数。通过多轮次的槽口调整和轨道优化,在有限的井台空间内完成了45口加密井的井眼轨道设计和防碰分析工作,各井分离系数的最小值均满足行业标准最小限值1.5的要求,并且70%集中在1.7以上,整体上降低了防碰风险。研究结果表明,渤海人工岛大型丛式井组加密防碰优化设计技术能解决丛式井组大规模加密调整的防碰设计问题,并有助于提高设计质量和设计效率。

     

    Abstract: When infill wells were drilled and massively upscaled within cluster well groups in the artificial island B of the Bohai Sea,it was difficult with low efficiency in the design of anti-collision and obstacle-bypassing systems.According to the analysis of the overall anti-collision situation and characteristics of the infill wells,the data of previously drilled wells were accurately calibrated;the principles for cluster well group platform optimization and anti-collision design which were specified in the industrial standard were used to formulate the specific workflow for anti-collision trajectory design in order to massively upscale the infill wells,and thus form an overall optimal design method and optimized the drilling sequence,slot matching relations,as well as anti-collision trajectory design parameters.Through multiple rounds of slots adjustment and trajectory optimization,trajectory design and anti-collision analysis were conducted in 45 infilling wells in a limited well platform space.The lowest separation coefficient values of all wells met the minimum limit of 1.5 specified by the industrial standard,and 70% of such values concentrated at more than 1.7,reducing the risk of borehole collision on the whole.The research results showed that the anti-collision optimization design technology can effectively solve the anti-collision design problem in large-scale infilling adjustment of well cluster groups,and improve the design quality and efficiency.

     

/

返回文章
返回