渤海油田稠油水平井防砂筛管耐温能力的确定

于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海

于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海. 渤海油田稠油水平井防砂筛管耐温能力的确定[J]. 石油钻探技术, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
引用本文: 于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海. 渤海油田稠油水平井防砂筛管耐温能力的确定[J]. 石油钻探技术, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
Citation: YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010

渤海油田稠油水平井防砂筛管耐温能力的确定

基金项目: 

国家科技重大专项"渤海油田高效采油工程及配套技术示范"(编号:2016ZX05058-003)资助。

详细信息
    作者简介:

    于法浩(1990-),男,内蒙古赤峰人,2012年毕业于东北石油大学石油工程专业,2015年获东北石油大学石油与天然气工程专业硕士学位,初级工程师,主要从事管柱力学和管柱设计方面的研究。

    蒋召平: E-mail:yufahao2009@163.com。

  • 中图分类号: TE358+.1

Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield

  • 摘要: 渤海油田热采水平井防砂筛管选型时参考的耐温能力未考虑井况的影响,导致部分热采水平井选用的防砂筛管不能满足注热要求而发生破坏。为此,在分析稠油热采水平井防砂筛管注热时受力的基础上,综合考虑弯曲应力与热应力对防砂筛管破坏的影响,给出了稠油热采水平井防砂筛管耐温能力的数值模拟计算方法。利用该方法计算了渤海油田6口热采水平井防砂筛管的耐温能力,分析了单位狗腿严重度下星孔、金属网布和桥式复合3种防砂筛管的耐温能力降低幅度。研究发现:考虑弯曲应力计算出的耐温能力与现场实际较吻合;单位狗腿严重度下星孔、金属网布和桥式复合3种防砂筛管耐温能力降低6~16℃;单位狗腿严重度下防砂筛管耐温能力的降低幅度随防砂筛管径向尺寸增大而增大;防砂筛管基管钢级越高,耐温能力降低幅度越小,且钢级对耐温能力降低幅度的影响程度大于径向尺寸;TP110H和BG110H钢级的金属网布或桥式复合防砂筛管具有较高的耐温能力,能满足渤海油田热采水平井的注热要求。研究结果表明,稠油热采水平井选择防砂筛管时,应考虑弯曲应力对防砂筛管耐温能力的影响,否则会导致防砂失效,影响稠油热采开发效果。
    Abstract: The current reference temperature resistance capacity for sand control screen liner selection of thermal recovery wells in Bohai Oilfield did not take account the influence of well conditions.Consequently,there was a breakdown of selected sand control screen liner in some thermal recovery wells because they failed to meet the requirements of heat injection.To solve the problem,researchers developed a numerical simulation method for calculating screen liner temperature resistance ability in thermal horizontal wells by means of the mechanical analysis of sand control screen liner in heat injecting conditions.Further,they considered the impact of bending and thermal stress on screen liner failure.Using this method,the temperature resistance capacity of sand control screen liner in six thermal recovery horizontal wells in Bohai Oilfield was calculated.Next,the reduction range of temperature resistance capacity of three types of sand control screen liner,i.e.star mesh,metal mesh and bridge-type composite under unit dog leg severity was analyzed.The results showed that the temperature resistance calculated under the bending stress was in good agreement with the actual situation.In fact,the temperature resistance of three types of sand control screen liner under unit dog leg severity was reduced by 6-16℃.Further,the reduction range of temperature resistance of sand control screen liner under unit dog leg severity increased with sand control screen line size.The higher steel grade of sand control screen liner generated a more limited range of reduced temperature resistance,and the influence of the degree of steel grade was greater than that of screen liner size.The grade TP110H,BG110H metal mesh or bridge-type composite sand control screen liner had high temperature resistance and could meet the heat injection requirements of thermal recovery wells in Bohai Oilfield.Therefore,we could conclude that the effect of bending stress on the temperature resistance capacity of sand control screen liner should be taken into account for selecting sand control screen liner for thermal recovery of heavy oil in horizontal wells.Notably,failing to consider it might cause the failure of sand control,and further affect the development effect of heavy oil thermal recovery.
  • [1] 王兆会,高德利.热采井套管损坏机理及控制技术研究进展[J].石油钻探技术,2003,31(5):46-48.

    WANG Zhaohui,GAO Deli.The casing damage mechanisms and its control in thermal recovery wells[J].Petroleum Drilling Techniques,2003,31(5):46-48.

    [2] 王廷瑞,王新卯.五口热采井套管损坏原因分析[J].石油钻探技术,1995,23(1):18-20.

    WANG Tingrui,WANG Xinmao.Cause analysis of casing damage in five thermal recovery wells[J].Petroleum Drilling Techniques,1995,23(1):18-20.

    [3] 赵益忠,孙磉礅,高爱花,等.稠油油藏蒸汽吞吐井长效防砂技术[J].石油钻探技术,2014,42(3):90-94.

    ZHAO Yizhong,SUN Sangdun,GAO Aihua,et al.Long-term sand control technology for multiple round steam huff and puff wells in heavy oil reservoirs[J].Petroleum Drilling Techniques,2014,42(3):90-94.

    [4] 罗蒙,王俐,李良庆.热采井用筛管热应力试验技术研究[J].宝钢技术,2013(3):39-44. LUO Meng,WANG Li,LI Liangqing,et al.Research on thermal stress experiment technique for sieve tubes used in thermal recovery wells[J].Bao-Steel Technology,2013

    (3):39-44.

    [5]

    SMITH K,BOWEN E.Testing results of an economical mesh screen for thermal application[R].SPE 170010,2014.

    [6] 隋晓东.热采水平井完井管柱受力分析及优化技术研究[D].东营:中国石油大学(华东),2011. SUI Xiaodong.Completion tubing stress analysis and optimization technology research of thermal horizontal wells[D].Dongying:China University of Petroleum(Huadong),2011.
    [7] 陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000:166-172. CHEN Tinggen,GUAN Zhichuan.Theory and techniques of drilling engineering[M].Dongying:Petroleum University Press,2000:166

    -172.

    [8] 王德新,于润桥.套管柱在水平井弯曲井段的可下入性[J].石油钻探技术,1997,25(1):12-13

    ,40. WANG Dexin,YU Runqiao.Trip ability of casing string in the curved interval of horizontal well[J].Petroleum Drilling Techniques,1997,25(1):12-13,40.

    [9] 高德利,高宝奎.水平井段管柱屈曲与摩阻分析[J].石油大学学报(自然科学版),2000,24(2):1-3. GAO Deli,GAO Baokui.Effects of turular buckling on torque and drag in horizontal well[J].Journal of the University of Petroleum,China(Edition of Natural Science),2000,24(2):1-3.
    [10] 刘坤芳,张兆银,孙晓明,等.注蒸汽井套管热应力分析及管柱强度设计[J].石油钻探技术,1994,22(4):36-40.

    LIU Kunfang,ZHANG Zhaoyin,SUN Xiaoming,et al.Analyses of steam-injected well casing thermal stress and casing string strength design[J].Petroleum Drilling Techniques,1994,22(4):36-40.

    [11] 李静,林承焰,杨少春,等.套管-水泥环-地层耦合系统热应力理论解[J].中国石油大学学报(自然科学版),2009,33(2):63-69. LI Jing,LIN Chengyan,YANG Shaochun,et al.Theoretical solution of thermal stress for casing-cement-formation coupling system[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(2):63-69.
    [12] 吴建平.防砂筛管受热变形分析[J].石油钻采工艺,2010,32(1):45-49.

    WU Jianping.Analyzing on sand control screen thermal deformation[J].Oil Drilling & Production Technology,2010,32(1):45-49.

    [13] 刘正伟,解广娟,张春杰,等.海上稠油热采井防砂筛管热应力分析[J].石油机械,2012,40(2):26-29.

    LIU Zhengwei,XIE Guangjuan,ZHANG Chunjie,et al.A thermal stress analysis of the sand control screen in offshore heavy oil thermal production wells[J].China Petroleum Machinery,2012,40(2):26-29.

    [14] 任思齐,康志勤,吕义清.热采井套管热固耦合作用数值模拟分析[J].煤炭技术,2017,36(5):301-303.

    REN Siqi,KANG Zhiqin,LYU Yiqing.Numerical simulation of thermal-stress coupling in casing of thermal recovery wells[J].Coal Technology,2017,36(5):301-303.

    [15] 王兆会,马兆忠.热采井温度对套管性能的影响及预应力值计算方法[J].钢管,2007,36(4):24-27.

    WANG Zhaohui,MA Zhaozhong.Effect by thermal well temperature on casing properties and calculation method for pretension[J].Steel Pipe,2007,36(4):24-27.

    [16] 杨雪春.热处理对稠油热采井专用套管HS110H的组织和性能的影响[J].齐齐哈尔大学学报(自然科学版),2014,30(2):72-76. YANG Xuechun.The impact of heat treatment on thickened oil hot well special casing HS110H organization and property[J].Journal of Qiqihar University(Natural Science Edition),2014,30(2):72-76.
    [17] 宋吉水,张国亮,刘绍轩,等.射孔对套管抗挤强度影响[J].辽宁工程技术大学学报(自然科学版),2008,27(4):523-525. SONG Jishui,ZHANG Guoliang,LIU Shaoxuan,et al.Effect produced by perforation on counter-extrusion intensity of casing[J].Journal of Liaoning Technical University(Natural Science),2008,27(4):523-525.
  • 期刊类型引用(10)

    1. 周涛,侯红意,陶亮,艾超. 渤海油田注水井环空保护封隔器的研制与应用. 工程机械. 2022(03): 96-104+13 . 百度学术
    2. 杜福云,刘国振,郭雯霖,张立波,郑金中,陈磊,李英松. 高性能注水井生产封隔器研制与试验. 机械工程师. 2021(05): 142-144 . 百度学术
    3. 李顺,贺启强,周大志,寸锡宏,任兆林,刘艳霞. 注水井环空带压统计分析及治理改进方向. 当代石油石化. 2021(05): 26-28 . 百度学术
    4. 韩祥海,平恩顺,安小萍,王林,贺燕飞,王志民,黄峰. 带压投送井口保护装置的研制及应用. 钻采工艺. 2021(04): 86-89 . 百度学术
    5. 宋辉辉,任从坤,任兆林,张福涛,田俊,刘艳霞. 海上油田分层防砂分层注水高效集成技术. 石油钻采工艺. 2021(03): 384-388 . 百度学术
    6. 刘红兰. 胜利海上油田安全可控长效分层注水技术. 石油钻探技术. 2019(01): 83-89 . 本站查看
    7. 张技. 油田安全环保隐患成因分析及治理技术探析. 石化技术. 2019(05): 235+237 . 百度学术
    8. 李勇. 埕岛油田长效细分注水关键技术及应用. 石油机械. 2019(10): 94-100 . 百度学术
    9. 杨建政. 适合海上低渗气田水平井固井的柔性水泥浆体系研究. 化工管理. 2019(32): 224 . 百度学术
    10. 刘红兰. 分层注水井测调一体化新技术. 石油钻探技术. 2018(01): 83-89 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  7929
  • HTML全文浏览量:  140
  • PDF下载量:  42
  • 被引次数: 10
出版历程
  • 收稿日期:  2017-09-23
  • 修回日期:  2018-07-29

目录

    /

    返回文章
    返回