高钢级钻杆强度塑性试验研究

Study on Strength and Plasticity of High Steel Grade Drill Pipe

  • 摘要: 钻杆强度级别提高,其塑性性能会发生变化,因此高屈强比成为影响高钢级钻杆推广应用的主要问题。对X95、G105、S135、V150和HL165系列高钢级钻杆进行了室温拉伸试验,利用真应力-真应变曲线分析了高钢级钻杆强度塑性特征参数的变化规律及屈强比对钻杆安全性的影响。试验结果表明:随着钢级提高,钻杆强度不断增加的同时,工程屈强比和真实屈强比都增大,但后者比前者约小5.5%~7.0%;不同钢级钻杆工程屈强比与其伸长率、冲击功、塑性失稳点应变量、均匀形变容量和静力韧度等塑性韧性指标无对应关系;虽然V150、HL165超高强度钻杆屈强比分别达到0.953和0.941,形变硬化能力略有降低,但仍具有高塑性变形能力、高韧度水平和高断裂强度。研究认为,不宜将工程屈强比作为衡量高钢级钻杆质量的一项硬性指标,良好的综合性能是确保钻杆安全使用的关键。

     

    Abstract: Increasing drill pipe strength grade results in a change in plastic property so a high yield ratio has become the main problem in high-strength drill pipe popularization and application.Tensile tests at room temperature were conducted on X95,G105,S135,V150 and HL165 series of high-strength drill pipes.In addition,the influence of the strength and plastic characteristic parameter variation rules and yield ratio on the safety of drill pipes were analyzed by means of a true tress-true strain curve.Test results showed that with the promotion of steel grade and continual increase of drill pipe strength,engineering yield-ratio and true yield-ratio both increased,but the latter was 5.5%-7.0% less than the former.The engineering yield-ratio of a different grade of steel drill pipe had no corresponding relationship with its elongation,impact energy,strain capacity at plastic instability point,uniform deformation capacity,static toughness and other ductility indices.Although the yield ratio of V150 and HL165 series of ultra high strength drill pipes reached 0.953 and 0.941 respectively with slight decrease of deformation hardening capability,they still possessed a high plastic deformation capacity,high toughness level and high breaking strength.The study suggested that it was inappropriate to take engineering yield ratio as rigid index to measure high grade drill pipe quality and acomprehensive list of properties is the key to ensuring the safe use of drill pipes.

     

/

返回文章
返回