Experimental Study on the Integrity of Low-Density Cement Sheath with Hollow Microsphere
-
摘要: 为了提高空心微珠低密度水泥环的长期封固能力,开展了循环载荷及高内压工况作用下的水泥环完整性试验研究。利用三轴岩石力学测试系统,采用轴向循环加卸载的方法,分析了循环加卸载过程中水泥石的损伤形变规律;在试验基础上,结合厚壁圆筒理论,分析了高内压工况下水泥环的封固完整性。试验结果表明:循环加卸载与高内压工况均能使空心微珠低密度水泥环丧失力学封固完整性。为此,优选了可分散性纤维FK对空心微珠低密度水泥浆进行增韧改性,改性后的水泥浆性能良好,可满足固井施工要求;增韧水泥石的抗拉强度、协调形变能力和承压能力均有所提高,弹性模量下降。研究结果表明,可分散性纤维FK增韧效果较好,为进一步提高低密度水泥环完整性提供了理论依据和优化手段。Abstract: In order to improve the long-term sealing capacity of low-density cement sheath with hollow microsphere,the experimental studies for cement sheath integrity under the working conditions of cyclic loading and high internal pressures have been conducted,and analyzed the damages and deformation law of set cement by using the method of cyclic axial loading and unloading in tri-axial rock mechanics system. On the basis of experiment,the isolating integrity of cement sheath under high internal pressure was evaluated by thick-wall cylinder theory. Experimental results showed that both cyclic loading and high internal pressures could lead to the losses in isolating integrity of low-density cement sheath with hollow microsphere. Therefore,the dispersible fiber FK was optimized to enhance the toughness of the low-density cement sheath with hollow microsphere. The modified cementing slurry has good performances,which can meet the requirements of cementing operation. The tensile strength,coordinated deformation capacity and loading capacity of the modified set cement were all improved,while the elasticity modulus was reduced. The results indicated that dispersible fiber FK had a good effect on toughness increment,which may provide the theoretical basis and optimization method to enhance the integrity of the low-density cement sheath.
-
Keywords:
- hollow microsphere /
- low density cement slurry /
- cement sheath /
- integrity /
- cyclic loading /
- inner pressure /
- mechanical property
-
-
[1] 黎泽寒,李早元,刘俊峰,等.低压易漏深井大温差低密度水泥浆体系[J].石油钻采工艺,2012,34(4):43-46. LI Zehan,LI Zaoyuan,LIU Junfeng,et al.Temperature stable low density slurry for low pressure loss deep wells[J].Oil Drilling Production Technology,2012,34(4):43-46. [2] 范伟华,符自明,曹权,等.相国寺储气库低压易漏失井固井技术[J].断块油气田,2014,21(5):675-677. FAN Weihua,FU Ziming,CAO Quan,et al.Cementing technology of low pressure and easy leaking well in Xiangguosi underground gas storage[J].Fault-Block Oil Gas Field,2014,21(5):675-677. [3] 刘学鹏,张明昌,冯明慧,等.复合空心微珠低密度水泥浆的研究与应用[J].石油钻采工艺,2014,36(6):39-41. LIU Xuepeng,ZHANG Mingchang,FENG Minghui,et al.Research and application of composite hollow microbead low density cement slurry[J].Oil Drilling Production Technology,2014,36(6):39-41. [4] 罗杨,陈大钧,许桂莉,等.高强度超低密度水泥浆体系实验研究[J].石油钻探技术,2009,37(5):66-71. LUO Yang,CHEN Dajun,XU Guili,et al.Lab experiment on high-intensity ultra-low-density cement slurry[J].Petroleum Drilling Techniques,2009,37(5):66-71. [5] 周剑,高德伟,严海兵.早强低密度水泥浆体系提高低压易漏井固井质量[J].天然气工业,2012,32(4):72-74. ZHOU Jian,GAO Dewei,YAN Haibing,et al.A early-strength and low-density slurry system used to improve cementing in low-pressure thief zones[J].Natural Gas Industry,2012,32(4):72-74. [6] 步玉环,宋文宇,何英君,等.低密度水泥浆固井质量评价方法探讨[J].石油钻探技术,2015,43(5):49-55. BU Yuhuan,SONG Wenyu,HE Yingjun,et al.Discussion of a method for evaluatingcementing quality with low-density cement slurries[J].Petroleum Drilling Techniques,2015,43(5):49-55. [7] 吴健.固井水泥环密封完整性研究[D].武汉:长江大学,2014. WU Jian.Research on the sheath seal and integrity[D].Wuhan:Yangtze University,2014. [8] 张景富,吕英渤,刘硕琼,等.水泥环力学参数与载荷间的适应性[J].石油钻采工艺,2016,38(5):594-600. ZHANG Jingfu,LYU Yingbo,LIU Shuoqiong,et al.Adaptability among loads and mechanical parameters of cement sheath[J].Oil Drilling Production Technology,2016,38(5):594-600. [9] 李进,龚宁,李早元,等.射孔完井工况下固井水泥环破坏研究进展[J].钻井液与完井液,2016,33(6):10-16. LI Jin,GONG Ning,LI Zaoyuan,et al.Progress in studying cement sheath failure in perforated wells[J].Drilling Fluid Completion Fluid,2016,33(6):10-16. [10] 赵效锋,管志川,廖华林,等.交变压力下固井界面微间隙产生规律研究[J].石油机械,2015,43(4):22-27. ZHAO Xiaofeng,GUAN Zhichuan,LIAO Hualin,et al.Study on cementing interface micro-annulus generation rules under alternating casing pressure[J].China Petroleum Machinery,2015,43(4):22-27. [11] 刘洋,严海兵,余鑫,等.井内压力变化对水泥环密封完整性的影响及对策[J].天然气工业,2014,34(4):95-98. LIU Yang,YAN Haibing,YU Xin,et al.Negative impacts of borehole pressure change on cement sheath sealing integrity and countermeasures[J].Natural Gas Industry,2014,34(4):95-98. [12] 初纬,沈吉云,杨云飞,等.连续变化内压下套管-水泥环-围岩组合体微环隙计算[J].石油勘探与开发, 2015,42(3):379-385. CHU Wei,SHEN Jiyun,YANG Yunfei,et al.Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J].Petroleum Exploration and Development,2015,42(3):379-385. [13] 关博文.交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制[D].西安:长安大学,2012. GUAN Bowen.Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses[D].Xi’an:Chang’an University,2012. [14] 刘仍光,张林海,陶谦,等.循环应力作用下水泥环密封性实验研究[J].钻井液与完井液,2016,33(4):74-78. LIU Rengguang,ZHANG Linhai,TAO Qian,et al.Experimental study on airtightness of cement sheath under alternating stress[J].Drilling Fluid Completion Fluid,2016,33(4):74-78. [15] 刘达列.疲劳破坏的连续性损伤力学模型的研究[D].杭州:浙江大学,2002. LIU Dalie.The research of fatigue damage about continuum damage mechanics model[D].Hangzhou:Zhejiang University,2002. [16] 余寿文.损伤力学[M].北京:清华大学出版社,1997:23-137. YU Shouwen.Damagemechanics[M].Beijing:Tsinghua University Press,1997:23-137. [17] 张钦.水平井多级压裂环空窜流机理研究[D].大庆:东北石油大学,2014. ZHANG Qin.Research on the mechanism of annular channeling during horizontal multi-stage fracturing[D].Daqing:Northeast Petroleum University,2014. [18] 李勇,陈瑶,靳建洲,等.页岩气井体积压裂条件下的水泥环界面裂缝扩展[J].石油学报,2017,38(1):105-111. LI Yong,CHEN Yao,JIN Jianzhou,et al.Cement ring interface crack propagation under volume fracturing in shale gas well[J].Acta Petrolei Sinica,2017,38(1):105-111. [19] NABIPOUR A,JOODI B,SARMADIVALEH M.Finite element simulation of downhole stresses in deep gas wells cements[R].SPE 132156,2010.
[20] 汪晓静,孔祥明,曾敏,等.新型苯丙胶乳水泥浆体系的室内研究[J].石油钻探技术,2014,42(2):80-84. WANG Xiaojing,KONG Xiangming,ZENG Min,et al.Laboratory research on a new styrene acrylic latex cement slurry system[J].Petroleum Drilling Techniques,2014,42(2):80-84. [21] KAY A M,JAY P D,PAUL J.Resin-based cement alternatives for deepwater well construction[R].SPE 155613,2012.
[22] 张文潇.纤维素纤维混凝土耐久性、高温抗爆裂及徐变特性[D].南京:东南大学,2015. ZHANG Wenxiao.Durability and resistance to spalling after high temperature and creep characteristics of cellulose fiber reinforced concrete[D].Nanjing:Southeast University,2015. -
期刊类型引用(7)
1. 高继开,姜涵钧,王秀龙,张凤鹏,彭建宇. 基于金属丝电爆炸的岩石爆破教学实验平台设计及应用. 实验技术与管理. 2024(11): 146-152 . 百度学术
2. 孟向丽,杨淼,黄利平,刘春祥,李旭光. 油井筛管堵塞识别和治理方法. 石油工业技术监督. 2022(04): 7-10 . 百度学术
3. 赵树彬,张命俊,路远涛,汤俊萍,汪锋,朱立江,郑永学. 可控冲击波增产技术在大庆油田的应用. 石油管材与仪器. 2022(05): 76-80 . 百度学术
4. 阎洪涛,徐文江,于继飞,姜维东,陈欢. 海上疏松砂岩油田注水压力优化方法研究. 中国海上油气. 2021(02): 131-135 . 百度学术
5. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 . 百度学术
6. 赵景辉,杨万有,郑春峰,李昂,沈琼. 可控冲击波作用下的油井产能模型研究. 重庆科技学院学报(自然科学版). 2021(03): 15-19+48 . 百度学术
7. 江海畏,薛启龙. 电爆冲击波对储层致裂效果影响因素的数值模拟研究. 探矿工程(岩土钻掘工程). 2020(11): 70-76 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 5956
- HTML全文浏览量: 74
- PDF下载量: 5228
- 被引次数: 8