海洋天然气水合物试采关键技术

光新军, 王敏生

光新军, 王敏生. 海洋天然气水合物试采关键技术[J]. 石油钻探技术, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
引用本文: 光新军, 王敏生. 海洋天然气水合物试采关键技术[J]. 石油钻探技术, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
Citation: GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008

海洋天然气水合物试采关键技术

基金项目: 

中国石化科技攻关项目“石油工程技术装备发展趋势及战略对策”(编号:P15163)部分研究内容。

详细信息
    作者简介:

    光新军(1986-),男,湖北仙桃人,2008年毕业于长江大学石油工程专业,2011年获中国石油大学(北京)油气井工程专业硕士学位,工程师,主要从事钻井技术及石油工程规划方面的研究工作。

  • 中图分类号: TE353

Key Production Test Technologies for Offshore Natural Gas Hydrate

  • 摘要: 针对海洋天然气水合物开发技术与常规海洋油气开发技术的异同,分析了海洋天然气水合物储层特性和试采面临的挑战,介绍了天然气水合物试采关键技术,包括控压钻井技术、套管钻井技术、抑制性钻井液、钻井液冷却系统、低温低放热水泥浆体系、完井技术、开采方式优选和储层及环境监测技术等,指出了我国海洋天然气水合物试采应围绕水合物物理力学性质、安全成井、连续排采与防砂、开采方法适应性评价、试采过程储层参数和地层形变监测等技术难题开展研究,通过示范工程,形成海洋天然气水合物试采技术体系,为我国海洋天然气水合物的高效开发提供技术支撑。
    Abstract: Taking intothe differences in development technologies for offshore natural gas hydrate (NGH) and conventional offshore oil and gas, this paper discusses the characteristics of NGH reservoirs and the challenges in NGH production tests. Key technologies for NGH production tests were presented, including managed-pressure drilling (MPD), cased drilling, inhibitive drilling fluid, drilling fluid cooling system, low-temperature and low-heat cement slurry system, completion technique, production method optimization, reservoir and environment monitoring, etc. It is proposed that research for offshore NGH production test in China should focus on physical and mechanical properties of hydrates, safe well construction, continuous production and sand control, adaptability evaluation of production method, and reservoir parameter and formation deformation monitoring during production test. Moreover, demonstrative projects should be adopted to create the offshore NGH production test technologies, so as to provide reliable support for development of offshore NGH effectively in China.
  • [1] 滕吉文,张永谦,阮小敏.发展可再生能源和新能源与必须深层次思考的几个科学问题:非化石能源发展的必由之路[J].地球物理学进展,2010,25(4):1115-1152. TENG Jiwen,ZHANG Yongqian,RUAN Xiaomin.Some important scientific problems for development of renewable and new energy:the only way for development of non-fossil energy[J].Progress in Geophysics,2010,25(4):1115-1152.
    [2]

    MIYAZAKI K,MASUI A,SAKAMOTO Y,et al.Effect of confining pressure on triaxial compressive properties of artificial methane hydrate bearing sediments[R].OTC 20721,2010.

    [3] 孙晓杰,程远方,李令东,等.天然气水合物岩样三轴力学试验研究[J].石油钻探技术,2012,40(4):52-57. SUN Xiaojie,CHENG Yuanfang,LI Lingdong,et al.Triaxial compression test on synthetic core sample with simulated hydrate-bearing sediments[J].Petroleum Drilling Techniques,2012,40(4):52-57.
    [4] 李传辉,刘学伟.地球物理技术在降低水合物钻井风险中的应用[J].地球物理学进展,2014,29(1):300-305. LI Chuanhui,LIU Xuewei.The application of geophysical techniques in reducing the drilling risks induced by gas hydrates[J].Progress in Geophysics,2014,29(1):300-305.
    [5] 沈海超,程远方,胡晓庆.天然气水合物藏降压开采近井储层稳定性数值模拟[J].石油钻探技术,2012,40(2):76-81. SHEN Haichao,CHENG Yuanfang,HU Xiaoqing.Numerical simulation of near wellbore reservoir stability during gas hydrate production by depressurization[J].Petroleum Drilling Techniques,2012,40(2):76-81.
    [6] 田辉.水合物钻井过程中稳定性的理论研究[D].青岛:中国石油大学(华东),2007. TIAN Hui.Theoretical study on the stability of natural gas hydrate[D].Qingdao:China University of Petroleum(Huadong),2007.
    [7] 白玉湖,李清平,周建良,等.天然气水合物对深水钻采的潜在风险及对应性措施[J].石油钻探技术,2009,37(3):17-21. BAI Yuhu,LI Qingping,ZHOU Jianliang,et al.The potential risk of gas hydrate to deepwater drilling and production and the corresponding strategy[J].Petroleum Drilling Techniques,2009,37(3):17-21.
    [8] 宫智武,张亮,程海清,等.海底天然气水合物分解对海洋钻井安全的影响[J].石油钻探技术,2015,43(4):19-24. GONG Zhiwu,ZHANG Liang,CHENG Haiqing,et al.The influence of subsea natural gas hydrate dissociation on the safety of offshore drilling[J].Petroleum Drilling Techniques,2015,43(4):19-24.
    [9]

    HANNEGAN D,TODD R J,PRITCHARD D M,et al.MPD:uniquely applicable to methane hydrate drilling[R].SPE 91560,2004.

    [10]

    TODD R J,HANNEGAN D M,HARRALL S.New technology needs for methane hydrates production[R].OTC 18247,2006.

    [11] 鲍洪志,赵向阳,张华卫,等.Addax OML 137区块深水控压钻井技术[J].石油钻采工艺,2013,35(4):35-39. BAO Hongzhi,ZHAO Xiangyang,ZHANG Huawei,et al.Deepwater managed pressure drilling technology in Block OML 137 of Addax[J].Oil Drilling and Production Technology,2013,35(4):35-39.
    [12]

    VRIELINK H J,BRAFORD J S,BASARAB L,et al.Successful application of casing-while-drilling technology in a Canadian arctic permafrost application[R].SPE 111806,2008.

    [13]

    ANDREY B,GURBAN V,STANISLAV K,et al.Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of western Siberia(Russian Federation) [R].OTC 24617,2014.

    [14] 徐一龙,黄凯文,梁继文,等.乐东气田表层井段的套管钻井技术[J].天然气工业,2013,33(11):74-78. XU Yilong,HUANG Kaiwen,LIANG Jiwen,et al.Casing drilling technology applied to surface interval of a well in the Ledong 22-1 Gas Field,Yinggehai Basin[J].Natural Gas Industry,2013,33(11):74-78.
    [15]

    WEBBER P,MORALES N,CONRAD P,et al.Development of a dual functional kinetic hydrate inhibitor for a novel North Sea wet gas application[R].SPE 164107,2013.

    [16] 徐加放,邱正松,何畅.深水钻井液中水合物抑制剂的优化[J].石油学报,2011,32(1):149-152. XU Jiafang,QIU Zhengsong,HE Chang.The inhibitor optimization of gas hydrates in deepwater drilling fluids[J].Acta Petroleum Sinica,2011,32(1):149-152.
    [17] 靳书凯,张崇,孟文波,等.陵水17-2深水气田钻完井天然气水合物生产风险及预防措施[J].中国海上油气,2015,27(4):93-101. JIN Shukai,ZHANG Chong,MENG Wenbo,et al.Gas hydrate risk and preventative measures for drilling and completion operations in LS 17-2 deep water gas field[J].China Offshore Oil and Gas,2015,27(4):93-101.
    [18]

    MAURY V,GUENOT A.Practical advantages of mud cooling systems for drilling[R].SPE 25732,1995.

    [19] 李宽,张永勤,孙友宏,等.天然气水合物钻井泥浆冷却系统研究及优化[J].钻采工艺,2013,36(4):34-36. LI Kuan,ZHANG Yongqin,SUN Youhong,et al.Research and optimization of mud cooling system in gas hydrate drilling[J].Drilling Production Technology,2013,36(4):34-36.
    [20]

    TAOUTAOU S,ASHRAF S,TAKAHASHI U.Implementation of a fit-for-purpose cementing technology for the first gas hydrate production in Japan[R].IPTC-17997-MS,2014.

    [21]

    MATSUZAWA M,TERAO Y,HAY B,et al.A completion system application for the world’s first marine hydrate production test[R].OTC 25310,2014.

    [22]

    TERAO Y,DUNCAN M,HAY B,et al.Deepwater methane hydrate gravel packing completion results and challenges[R].OTC 25330,2014.

    [23]

    QIU Kaibin,YAMAMOTO K,BIRCHWOOD R A,et al.Well integrity evaluation for methane hydrate production in the deepwater Nankai Trough[R].IPTC 17792,2014.

    [24]

    KURIHARA M,OUCHI H,NARITA H,et al.Gas production from methane hydrate reservoirs[C]//Proceedings of the 7th International Conference on Gas Hydrate,Edingburgh,Scotland,United Kingdom,July 17-21,2011.

    [25] 栾锡武,赵克斌,孙冬胜,等.天然气水合物的开采:以马利克钻井为例[J].地球物理学进展,2007,22(4):1295-1304. LUAN Xiwu,ZHAO Kebin,SUN Dongsheng,et al.Gas hydrates production:in case of Mallik test well[J].Progress in Geophysics,2007,22(4):1295-1304.
    [26]

    YAMAMOTO K,TERAO Y,IKAWA T,et al.Operational overview of the first offshore production test of methane hydrate in the Eastern Nankai Trough[R].OTC 25243,2014.

    [27] 张旭辉,鲁晓兵,刘乐乐.天然气水合物开采方法研究进展[J].地球物理学进展,2014,29(2):858-869. ZHANG Xuhui,LU Xiaobing,LIU Lele.Advances in natural gas hydrate recovery methods[J].Progress in Geophysics,2014,29(2):858-869.
    [28] 李刚,李小森,Keni ZHANG,等.水平井开采南海神狐海域天然气水合物数值模拟[J].地球物理学报,2011,54(9):2325-2337. LI Gang,LI Xiaosen,ZHANG Keni,et al.Numerical simulation of gas production from hydrate accumulations using a single horizontal well in Shenhu Area,South China Sea[J].Chinese Journal of Geophysics,2011,54(9):2325-2337
    [29]

    TERAO Y,LAY K,YAMANOTO K.Design of the surface flow test system for 1st offshore production test of methane hydrate[R].OTC 24719,2014.

    [30] 盛堰,王兆山,冯久超,等.天然气水合物海底环境效应长期监测低功耗控制系统嵌入式设计[J].海洋技术,2013,32(2):30-34. SHENG Yan,WANG Zhaoshan,FENG Jiuchao,et al.Low-power control system embedded design for long-term seabed environmental effects monitoring system of carbon hydrate[J].Ocean Technology,2013,32(2):30-34.
  • 期刊类型引用(10)

    1. 李富强,宋朝晖,伊明,刘洪涛,张森,刁斌斌. 救援井磁测距时电极与探管最优距离的计算. 石油钻探技术. 2024(03): 34-39 . 本站查看
    2. 刘永升,豆子钧,周兢,杜兵建,张健松. 应急救援钻探轨道设计及软件应用现状研究. 矿业安全与环保. 2024(06): 168-176 . 百度学术
    3. Lu Cheng,Xiao-Hua Che,Wen-Xiao Qiao,Teng Zhao. 3D trajectory inversion of an adjacent well using scattered P-wave. Petroleum Science. 2023(02): 857-865 . 必应学术
    4. 蒲文学,范光第,朱建建,赵国山. 磁性随钻测斜仪所需无磁钻具长度及影响因素研究. 石油钻探技术. 2022(04): 129-134 . 本站查看
    5. 刘永辉,李然,朱宽亮. 密集丛式井磁干扰情况下防碰判断与控制方法. 钻采工艺. 2021(01): 43-47 . 百度学术
    6. 于瑞丰,刁斌斌,高德利. 基于邻井距离测量误差的救援井磁测距工具优选方法. 石油钻探技术. 2021(06): 118-124 . 本站查看
    7. 陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究. 石油钻探技术. 2018(03): 114-119 . 本站查看
    8. 窦新宇,梁华庆. 丛式井电磁防碰信号采集系统设计. 仪表技术与传感器. 2018(02): 109-112+138 . 百度学术
    9. 范光第,蒲文学,赵国山,黄根炉. 磁力随钻测斜仪轴向磁干扰校正方法. 石油钻探技术. 2017(04): 121-126 . 本站查看
    10. 李翠,高丽萍,李佳,高德利,侯煜琨. 邻井随钻电磁测距防碰工具模拟试验研究. 石油钻探技术. 2017(06): 110-115 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  8476
  • HTML全文浏览量:  118
  • PDF下载量:  14421
  • 被引次数: 18
出版历程
  • 收稿日期:  2016-03-30
  • 修回日期:  2016-08-04
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回