A New Method of Detecting while Drilling Resistivity Anisotropy with Azimuthal Electromagnetic Wave Tools
-
摘要: 随着随钻方位电磁波仪器在大斜度井和水平井中的广泛应用,电阻率各向异性已成为影响地质导向和地层评价准确性的主要因素之一。以Baker Hughes公司的APR仪器为例,根据随钻方位电磁波仪器多分量的特点,采用数值模拟方法分析电阻率各向异性对仪器各分量信号响应的影响,利用对称发射补偿测量来增强或消除各向异性的影响,并采用正反演方法确定地层电阻率各向异性。模拟结果表明:磁场信号轴向分量与电阻率各向异性在相对井斜角0°~90°内呈单调递增关系;磁场信号横向分量与电阻率各向异性呈抛物线规律,在相对井斜角为0°和90°时影响为零;随钻方位电磁波电阻率仪器不同分量进行组合可以确定地层电阻率的各向异性。对方位电磁波响应曲线数据进行三参数反演得到地层水平电阻率、垂直电阻率以及相对井斜角,利用反演后的测量资料可以提高地层评价和地质导向的准确性。Abstract: With the extensive application while drilling of azimuthal electromagnetic wave tools in highly deviated wells or horizontal wells, resistivity anisotropy is currently one of the main factors influencing geosteering and formation evaluation accuracy. Different signals may interface from the azimuthal electromagnetic wave tools. The study used numerical simulation on Baker Hughes’s APR tool to determine the effect of resistivity anisotropy on the response of each component signal. In the simulation, the effect of anisotropy was enhanced or removed by using the symmetrically transmitted compensation measurement. The anisotropy of formation resistivity was calculated from forward and inversion. It showed in the simulation that when relative deviation angle was in the range of 0°-90°, axial component of magnetic field signals increased monotonically with resistivity anisotropy and both followed the parabolic law. When the relative deviation angle was 0° or 90°, the effect would diminish. The anisotropy of formation resistivity could be confirmed effectively by the combination of different signal components of electromagnetic resistivity tools while drilling. Horizontal resistivity, vertical resistivity and relative deviation angle might be obtained from three-parameter inversion on azimuthal electromagnetic wave response data. Formation evaluation and geosteering may be more accurate when based on the inverted measurement data.
-
-
[1] FANG S,MERCHANT G A,HART E,et al.Determination of structural dip and azimuthal from LWD azimuthal propagation resistivity measurements in anisotropic formations[R].SPE 116123,2008.
[2] YIN Hezhu,KURNIAWAN B.Resistivity anisotropy models and multi-component induction measurements:impact on Sw and uncertainty 0 HPV estimation[R].SPWLA-2008-LLLL,2008.
[3] ANDERSON B I,BARBER T D,GIANZERO S C.The effect of crossbedding anisotropy on induction tool response[R].SPWLA-2001-v42n2a6,1998.
[4] 闫建平,蔡进功,赵铭海,等.考虑岩石结构信息的砂砾岩体有效储层测井判识方法[J].同济大学学报(自然科学版),2011,39(9):1365-1372. YAN Jianping,CAI Jingong,ZHAO Minghai,et al.Identification method of effective reservoir for glutenite body using well logging based on rock texture[J].Journal of Tongji University(Nature Science),2011,39(9):1365-1372. [5] 高杰,陈木银,陈雅薇,等.定向井各向异性地层交流电测井响应模拟[J].勘探地球物理进展,2003,26(4):58-61. GAO Jie,CHEN Muyin,CHEN Yawei,et al.Forward modeling of AC logging response in directional wells of anisotropic formations[J].Progress in Exploration Geophysics,2003,26(4):58-61. [6] 杨震,杨锦舟,韩来聚.随钻方位电磁波电阻率成像模拟及应用[J].吉林大学学报(地球科学版),2013,43(6),342-350. YANG Zhen,YANG Jinzhou,HAN Laiju.Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J].Journal of Jilin University(Earth Science Edition),2013,43(6):342-350. [7] 王昌学,周灿灿,储昭坦,等.电性各向异性地层频率域电磁响应模拟[J].地球物理学报,2006,49(6):1873-1883. WANG Changxue,ZHOU Cancan,CHU Zhaotan,et al.Modeling of electromagnetic responses in frequency domain to electrical anisotropic formations[J].Chinese Journal of Geophysics,2006,49(6):1873-1883. [8] LI Shanjun,CHEN Jiefu,BINFORD T L Jr.Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle wells[R].SPWLA-2014-EEEE,2014.
[9] LI Qiming,OMERAGIC D,CHOU L,et al.New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[R].SPWLA-2005-UU,2005.
[10] BITTAR M S,KLEIN J D,RANDY B,et al.A new azimuthal deep reading resistivity tool for geosteering and advanced formation evaluation[R].SPE 109971,2007.
[11] ZHANG Zhiyi,GONGUET C,RAJANI V,et al.Directional LWD resistivity tools and their business impacts[R].SPWLA-2008-FFFF,2008.
[12] HAGIWARA T.A new method to determine horizontal-resistivity in anisotropic formations without prior knowledge of relative dip[R].SPWLA-1996-Q,1996.
[13] 康俊佐,邢光龙,杨善德.多传播电阻率测井的探测能力与资料处理方法[J].石油勘探与开发,2006,33(3):97-102. KANG Junzuo,XING Guanglong,YANG Shande.Detective ability and data processing method of the MPR logging[J].Petroleum Exploration and Development,2006,33(3):97-102. [14] 孙向阳,聂在平,赵延文,等.用矢量有限元方法模拟随钻测井仪在倾斜各向异性地层中的电磁响应[J].地球物理学报,2008,51(5):326-333. SUN Xiangyang,NIE Zaiping,ZHAO Yanwen,et al.The electromagnetic modeling of logging-while-drilling tool in tilted anisotropic formations using vector finite element method[J].Chinese Journal of Geophysics,2008,51(5):326-333. [15] OMERAGIC D,LI Qiming,CHOU L,et al.Deep directional electromagnetic measurement for optimal placement[R].SPE 97045,2005.
[16] CALLEJA B,MARKET J,PITCHER J,et al.Multi-sensor geosteering[R].SPWLA-2010-82670,2010.
[17] 肖加奇,张庚骥.水平井和斜度井中的感应测井响应计算[J].地球物理学报,1995,38(3):396-404. XIAO Jiaqi,ZHANG Gengji.Computation of induction logging response in horizontal and highly-deviated wells[J].Chinese Journal of Geophysics,1995,38(3):396-404. [18] CHEMALI R E,CAIRNS P,WANG T,et al.Method for signal enhancement in azimuthal propagation resistivity while drilling:7375530B2[P].2008-05-20.
[19] WANG T,CHEMALI R E.Method of generating a deep resistivity image in LWD measurement:7483793B2[P].2009-01-27.
-
期刊类型引用(6)
1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
2. 刘有武. 元素录井在陇东区块长7段致密油储层水平井地质导向中的研究与应用. 录井工程. 2024(01): 40-46 . 百度学术
3. 阚洪阁,薛杰,罗腾跃,张昆,杜奎甫,朱明,俞天军,陈刚. 延113—延133井区水平井钻遇地层特征及地质导向. 非常规油气. 2022(01): 57-64 . 百度学术
4. 张稳,张雷,黄力,李小刚,石石,孙雪冬,赵龙梅,戴瑞瑞,童姜楠. 低勘探程度区煤系致密气水平井地质导向技术及应用——以DJ-P37井区为例. 煤田地质与勘探. 2022(09): 171-180 . 百度学术
5. 豆志远,王昆剑,李进,谢小品,李瑞峰,朱培,王伟. 渤海油田水平分支井钻完井关键技术. 特种油气藏. 2020(02): 157-163 . 百度学术
6. 阎荣辉,田伟志,鲍永海,武星,杨森,沈柏坪. 元素录井技术在鄂尔多斯盆地致密砂岩水平井地质导向中的研究与应用. 录井工程. 2020(04): 22-28 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 2785
- HTML全文浏览量: 134
- PDF下载量: 2601
- 被引次数: 7