燃烧热能机械能复合破岩先导性试验研究

胡琼, 车强, 任小玲

胡琼, 车强, 任小玲. 燃烧热能机械能复合破岩先导性试验研究[J]. 石油钻探技术, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
引用本文: 胡琼, 车强, 任小玲. 燃烧热能机械能复合破岩先导性试验研究[J]. 石油钻探技术, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
Citation: HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006

燃烧热能机械能复合破岩先导性试验研究

基金项目: 

中国石化集团基础前瞻性项目"井壁陶瓷化钻井技术可行性研究"(编号:JP13051)资助。

详细信息
    作者简介:

    胡琼(1987-),女,湖北荆门人,2009年毕业于长江大学石油工程专业,2012年获长江大学油气井工程专业硕士学位,工程师,主要从事油气钻井新技术探究和新产品开发。E-mailjoan8563@126.com。

  • 中图分类号: TE21

Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods

  • 摘要: 为了证实燃烧热能-机械能复合破岩方法的可行性,通过理论分析和室内试验对该破岩方法进行了研究。采用瞬态传热方式对岩石有限元模型进行了热分析,评价了燃烧热能对破岩的作用;并利用自制的钻头和试验台架开展了模拟钻进试验和对比试验,验证了燃烧热能-机械复合破岩的可行性和破岩提速能力。理论分析可知,在不考虑岩石受热而发生热应力裂解的情况下,燃烧热能获得的钻速达18.0 m/h。模拟试验得到,该方法在花岗岩中的平均钻进速度为24.5 m/h,同时钻进中高温改变了井眼周围岩石成分的团聚状态,可形成1.8 mm厚的陶瓷层;在相同试验条件下,该破岩方法获得的钻进速度是常规机械破岩方法的8.3倍。研究结果表明,对于导热系数较小、抗拉强度和剪切强度较低的岩石,燃烧热能形成的热冲击力能引起岩石脆性破坏,降低岩石抗压强度,与机械能复合破岩能明显提高钻进效率。
    Abstract: In this paper, theoretical analysis and laboratory tests were performed on the thermal-mechanical composite rock breaking method to verify its feasibility. Thermal analysis was conducted on the rock finite element model by means of transient heat transfer to evaluate the effect of heating power on rock breaking. And then, simulated drilling tests and comparison tests were carried out by using the self-made drilling bits and test benches to verify the feasibility and rock breaking velocity increasing capacity of the thermal-mechanical composite rock breaking method. Based on the theoretical analysis, the penetration rate contributed by the heat of combustion was 18.0 m/h if thermal-stress rock cracking due to the heat was not taken into consideration. Based on simulation tests, the average penetration rate in granites was 24.5 m/h. And in the process of drilling, the aggregation state of rock compositions around the borehole was changed under high temperature, and consequently a ceramic layer of 1.8 mm thick was formed. And in the same test conditions, the penetration rate obtained by the thermal-mechanical composite rock breaking method was 8.3 times the conventional one. It was shown that brittle failure occurred on the rocks with lower coefficient of heat conductivity, tensile strength and shear strength under the effect of heat impact caused by heat of combustion, and the compressive strength dropped. And by virtue of the thermal-mechanical composite rock breaking method, drilling efficiency was increased significantly.
  • 世界能源消耗量不断增长,对环境的影响日益凸显,对环境保护提出了更高要求。煤炭等常规资源在使用过程中会对大气环境产生一定影响,进而影响人们的日常生活和身体健康。天然气水合物作为一种新型清洁能源,如果能够进行商业化开采并应用于工业生产和日常生活,将会提高人们生活的环境质量。天然气水合物是天然气与水在高压、低温条件下形成的类似冰状的结晶物质,因其外观像冰,遇火可燃烧,所以又被称为“可燃冰”、“固体瓦斯”或者“气冰”[1]。天然气水合物主要埋藏在海洋深水海底地层、大陆永久冻土、岛屿的斜坡地带、大陆边缘的隆起处、极地大陆架及内陆湖的深水湖底地层内[17]。研究认为,天然气水合物中碳的总量约为当前已探明所有化石燃料(包括煤、石油和天然气)中碳总量的2倍[8]

    目前,天然气水合物的开采还处于勘探、试采和小规模开采阶段[9],进展缓慢的主要原因是对天然气水合物的开采方式还没有达成共识,主要是担心开采过程中天然气水合物会瞬间大规模气化,对环境造成灾难性的影响。为此,笔者分析了天然气水合物开采过程中的环境安全问题,从天然气水合物气化开采原理、开采实践等方面探讨了天然气水合物开采的低速性和环境安全性。

    海底天然气水合物从海底开采出来过程中,可能会破坏海底的稳定性和海洋生态环境等,甚至影响到整个海洋生态系统的平衡和稳定性。目前,开采海底天然气水合物时人们普遍担心的主要有海底天然气水合物瞬间大规模气化、破坏海洋生态环境、加剧全球变暖、产生海底地质灾害等问题。

    1)海底天然气水合物的瞬间大规模气化。一些学者认为天然气水合物一旦被开采,将无法控制,会出现天然气水合物大规模瞬间气化的情况[10]。具体的认识是:开采天然气水合物的过程涉及外来工具或能量的介入,天然气水合物在海底的稳定状态将被破坏,由介入点开始逐步蔓延扩大,大面积的天然气水合物受到影响,可能出现瞬间大规模气化的情况;海底产生的大量气体,会使海水发生大幅度的波动,产生类似于海底地震的效果。

    2)破坏海洋生态环境。在开采天然气水合物的过程中,部分天然气会通过海底土壤孔隙向水体中泄露,破坏海洋生态环境。进入海水中的天然气,在水体中氧气充分的情况下,大部分会与氧气反应生成二氧化碳;生成的二氧化碳在海底可以溶解碳酸盐矿物;没有反应的天然气和二氧化碳继续向上运移,部分二氧化碳在靠近海面时会被海水中的浮游植物转化为氧气;剩余的天然气和二氧化碳会逸出海面进入大气层。天然气对海洋生态的破坏主要是对海水中氧气的消耗,而氧气被消耗又是导致海洋生物灭绝的直接原因。因此,部分专家学者认为天然气水合物的开采必将影响到海洋生态平衡,导致部分海洋生物的灭绝[1112]

    3)加剧全球变暖。一些学者认为天然气水合物分解产生的天然气(主要成分是甲烷)与二氧化碳一样,也是温室气体,并且同质量甲烷产生的温室效应是二氧化碳的20~30倍,因此担心天然气水合物开采过程中会有大量天然气泄露到空气中,对现有大气的组成造成恶劣影响,加剧全球变暖,改变全球气候[1112]

    4)产生海底地质灾害。分析已有试采结果后认为,海底的天然气水合物增大了附近沉积物储层的机械强度。如果天然气水合物分解为游离气和孔隙水,将会使沉积物储层的地质力学稳定性大幅度降低[1315],而地层岩土强度降低是天然气水合物开采中可能造成地质灾害(如海床塌陷、海底滑坡)的根本原因。

    天然气水合物处于稳定状态的温度压力条件是一定的,可由相平衡曲线确定,稳定状态下的温度为0~10 ℃,压力在10 MPa以上。通过应用工程技术措施破坏天然气水合物的稳定状态,使其不断分解,这是目前天然气水合物开采方法的基本原理。由于天然气水合物的动力学问题尚未研究清楚,许多开采技术和工艺还只能停留在试验阶段。

    天然气水合物以固态形式埋藏在海底储层中,开采过程中会发生相态的变化,从固体转变成气体和水[16]。天然气水合物的分解热为54.67 kJ/mol[15]。在井筒中向上流动的同时,随着压力的降低,体积膨胀,需要吸热。对热量的吸收是天然气水合物开采中需要重点考虑的因素。目前,天然气水合物常规开采方法主要有降压开采、化学剂注入开采和热力开采[1725]

    降压开采法是通过降低天然气水合物储层的压力,使天然气水合物的相平衡点产生变动,从而使其分解。传统意义上的降压方式主要有2种[19]:1)抽出井筒内的液体或降低井筒内液体的密度来降压;2)泵出天然气水合物层下方的游离气体或者其他流体,达到降低天然气水合物层压力的目的。降压开采天然气水合物时不需要注入太多人工能量,所需要的能量主要是地层内部的热流。由于没有人工热源供热,只利用地层温度提供热量,单一使用降压法开采天然气水合物的速度是缓慢的。降压法对于储层温度太低(接近或者低于0 ℃)的天然气水合物藏并不适用,主要原因是低于0 ℃时水可能以冰的形式存在。冰的存在会对天然气水合物的气化以及气态天然气的输送产生一定影响。

    化学剂注入法[8]主要是通过向天然气水合物储层中注入盐水、甲醇、乙醇、乙二醇或丙三醇等化学剂,破坏天然气水合物分子间的氢键,改变温度和孔隙压力,使天然气水合物的相平衡条件发生变化,从而分解为天然气和水。该方法存在化学药剂价格昂贵、作用过程比较缓慢、可能造成环境污染的问题。

    热力开采是通过钻井技术在稳定的天然气水合物储集层中安装管道,利用管道对地层进行加热,提高管道附近储集层的温度,促进天然气水合物不断分解。热力开采法的不足之处是热损失大,热效率低。

    由以上分析可知,在天然气水合物开采过程中,热量的供给是至关重要的因素。在压力一定的条件下,只有热量供给充足,天然气水合物才能不断分解出气态天然气;若热量供给不足,天然气产量就会降低;一旦热量供给停止,将不再分解产生天然气。

    针对于常规开采方法的不足,周守为、伍开松等人[2629]提出了海底天然气水合物固态流化开采方法,基本流程如图1所示。

    图  1  深水浅层非成岩天然气水合物固态流化开采示意[29]
    Figure  1.  Schematic diagram of solid-state fluidized exploitation of deep-water shallow layer non-diagenetic gas hydrates[29]

    该方法的基本原理是:首先利用天然气水合物在海底温度和压力条件下的稳定性,采用机械办法将地层中的固态天然气水合物碎化;然后在海底进行分离、分解;最后将分离、分解后的含气水合物浆体举升到水面工程船,分离后的固体岩屑排放在海底。具体施工流程为[26]:海洋钻井钻至天然气水合物目的层后,采用钻杆固井方式固井,并在钻杆中下入连续油管钻穿井底钻头,再采用喷射短节在井底射流破碎天然气水合物至细小颗粒,并将天然气水合物颗粒携带出井筒,最后分离出天然气。固态流化方法在技术上是可行的,但存在着不足,即在开采过程中需要一直进行采矿作业,这与常规的油气开采有很大区别。对于常规油气,钻井完井结束后主要依靠地层的渗流进行开采,后期可能需要人工举升方式的辅助,但不需要一直对地层进行破碎施工。持续钻进需要钻进设备的不断运行,大大增加了开采成本,导致商业应用前景不太乐观。

    天然气水合物的开采过程并不是一个迅速的过程,需要能量的补充和缓慢的气化。笔者认为,在现有开采水平下,天然气水合物的开采是低速的、环境是安全的。

    开采过程中,由于天然气水合物的气化和气态天然气的膨胀,不断吸热,会在开采井附近形成低温区,并且随着开采时间增长,低温区会越来越大,核心区的温度越来越低(见图2)。温度的持续降低和低温区的不断扩大,一方面会使天然气水合物的气化速度变慢,另一方面会使地层能量传递到开采井附近的速度变慢,导致产量逐步降低。2017年,我国在南海进行了天然气水合物降压法开采试验,初期产量很高,后期产量低。截至关井,连续试采60 d,累计产气量超过30×104 m3,平均日产气量5 000 m3以上,最高日产气量达3.5×104 m3[30]

    图  2  开采过程中井筒附近低温区示意
    Figure  2.  Schematic diagram of the low temperature zone near wellbore during the exploitation process

    在无人工供热条件下,采用降压开采法等方法开采天然气水合物时,天然气水合物分解所需热量只能由地层提供,而地层的导热系数一般比较小。国内一些学者对黏土、砂土的导热系数做过相关研究,结果表明,黏土、砂土的导热系数随着含水率升高先增大再减小,在含水率为25%左右时达到最大值,黏土、砂土的最大导热系数分别约为1.543和1.335 W/(m·K)[3135]。因此,天然地层热量的供给是一个缓慢的过程,制约了天然气水合物分解的速度,造成天然气水合物在降压开采条件下不会持续高产[3637]。随着孔隙压力的降低,储层慢慢沉降、压实,孔隙度和渗透率降低,产量也随之降低。

    天然气水合物类似一种含天然气的冰或雪,冰或雪不会出现大规模的突然汽化,只会随着环境的改变发生缓慢的变化。因此,天然气水合物也不会出现大规模、失控的气化。

    天然气水合物气化并顺利进入井筒的前提条件是井筒内的压力低于储层的原始压力。生产井井筒内产生一个与储层连通的低压区,气化后的天然气水合物在压力作用下,主要向井筒内移动,进入海水中的天然气会由于压力作用而减少。因此,正常生产时进入海水中的天然气与开采之前相比只会减少,而不会增加。

    海底之下天然气水合物分解后产生的一些流体组分从海底表面溢出,从而形成冷泉,如图3所示。之所以称其为冷泉,是因为天然气水合物分解产生气态天然气和气态天然气膨胀过程中均需要吸收大量的热量,从而降低了周围环境的温度。同时,由于海底表面溢出的流体中含有甲烷、硫化氢等组分,可为一些海底微生物提供足够的养分[38],冷泉区域一般都是深海海底生命比较活跃的地方。与海底其他区域相比,冷泉好像“沙漠中的绿洲”。冷泉周围能够形成生物群落,表明地层将热量传到气化界面的速度是很慢的,天然气水合物在天然能量条件下不会剧烈、迅速地分解,而是缓慢、持续地分解。

    图  3  海底冷泉及生物群落示意
    Figure  3.  Schematic diagram of subsea cold springs and biomes

    天然气水合物的开采对海洋生物的影响主要体现在以下2方面:

    1)海底冷泉附近存在生物群落,说明天然气的少量逸出有利于海底生物群落的形成;

    2)海水中如果只存在氧气,而没有天然气等有机物质,许多物种将因为缺少食物供给而面临灭绝。

    在海洋生态环境中,只有海水、氧气和天然气等均存在的情况下,才能达到一个平衡状态。天然气水合物的开采原理决定了泄漏于海水中的天然气量并不大,有时可能会减少冷泉的气量,但减少数量有限。因此,现有技术水平下天然气水合物的低速开采,不会对海洋生态环境产生太大影响。

    天然气水合物的开采与其他矿产的开采一样,都会对环境产生一定的负面作用,如海床塌陷、海底滑坡,均属于常规灾害。由于海底情况的复杂性,此类灾害存在一定的不可控性,且是不可避免的,但对环境的危害不大。

    1)天然气水合物作为一种比较清洁的能源,可以安全开采和利用。

    2)天然气水合物在开采过程中由固态转变为气态和液态,发生相态变化和气体体积的膨胀需要大量的热。受地层供热速度的制约,天然气水合物的开采具有低速性。

    3)天然气水合物的开采会对环境产生一定影响,但不会爆发大规模、无控制的气化,也不会对海洋水体、海洋生态环境和大气产生严重影响,只可能发生海床塌陷、海底滑坡等常规灾害。因此,开采天然气水合物对环境危害不大,可认为是安全的。

  • [1] 吴立,张时忠,林峰.现代破岩方法综述[J].探矿工程(岩土钻掘工程),2000,27(2):49-51. WU Li,ZHANG Shizhong,LIN Feng.Synthesizing comment on modern rock fragmentation methods[J].Exploration Engineering(Drilling Tunneling),2000,27(2):49-51.
    [2] 王雷,郭志勤,张景柱,等.旋冲钻井技术在石油钻井中的应用[J].钻采工艺,2005,28(1):8-10. WANG Lei,GUO Zhiqin,ZHANG Jingzhu,et al.Application of percussive-rotary drilling technology in oil wells[J].Drilling Production Technology,2005,28(1):8-10.
    [3] 王海娟,张晓东,陈世春,等.应用空气锤钻进提高钻速机理分析[J].石油矿场机械,2010,39(7):22-24. WANG Haijuan,ZHANG Xiaodong,CHEN Shichun,et al.Mechanism of increasing ROP in gas drilling with air hammer[J].Oil Field Equipment,2010,39(7):22-24.
    [4] 闫铁,李玮,毕雪亮,等.一种基于破碎比功的岩石破碎效率评价新方法[J].石油学报,2009,30(2):291-294. YAN Tie,LI Wei,BI Xueliang,et al.A new evaluation method for rock-crushing efficiency based on crushing work ratio[J].Acta Petrolei Sinica,2009,30(2):291-294.
    [5] 李根生,沈忠厚.高压水射流理论及其在石油工程中应用研究进展[J].石油勘探与开发,2005,32(1):96-99. LI Gensheng,SHEN Zhonghou.Advances in researches and applications of water jet theory in petroleum engineering[J].Petroleum Exploration and Development,2005,32(1):96-99.
    [6] 伍开松,古剑飞,况雨春,等.粒子冲击钻井技术述评[J].西南石油大学学报,2008,30(2):142-146. WU Kaisong,GU Jianfei,KUANG Yuchun,et al.Comment on particle impact drilling technology[J].Journal of Southwest Petroleum University,2008,30(2):142-146.
    [7] 沈忠厚,王海柱,李根生.超临界CO2连续油管钻井可行性分析[J].石油勘探与开发,2010,37(6):743-747. SHEN Zhonghou,WANG Haizhu,LI Gensheng.Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide[J].Petroleum Exploration and Development,2010,37(6):743-747.
    [8] 袁光宇.射流泵降低井底压差工具研究现状及性能分析[J].石油钻探技术,2012,40(4):76-80. YUAN Guangyu.Current status of research and performance analysis of depressure tools for jet pump[J].Petroleum Drilling Techniques,2012,40(4):76-80.
    [9] 付加胜,李根生,史怀忠,等.水力脉冲空化射流钻井技术适应性分析[J].石油钻采工艺,2012,34(5):10-14. FU Jiasheng,LI Gensheng,SHI Huaizhong,et al.Analysis on adaptability of hydraulic pulse cavitating jet drilling technology[J].Oil Drilling Production Technology,2012,34(5):10-14.
    [10] 孙伟良.钻头分流降低井底压力机理的研究[D].中国石油大学(北京)石油工程学院,2012. SUN Weiliang.Mechanism study on the bottom hole pressure reduction by drilling fluid shunt on bit[D].China University of Petroleum(Beijing),College of Petroleum Engineering,2012.
    [11] 王德余,李根生,史怀忠,等.高效破岩新方法进展与应用[J].石油机械,2012,40(6):1-6. WANG Deyu,LI Gensheng,SHI Huaizhong,et al.Progress of the high-efficiency rock-breaking method[J].China Petroleum Machinery,2012,40(6):1-6.
    [12] 徐依吉,周长李,钱红彬,等.激光破岩方法研究及在石油钻井中的应用展望[J].石油钻探技术,2010,38(4):129-134. XU Yiji,ZHOU Changli,QIAN Hongbin,et al.The study of laser rock breaking method and its application in well drilling[J].Petroleum Drilling Techniques,2010,38(4):129-134.
    [13] 陈世和,麻胜荣,邹文洁.等离子技术在矿山中的应用[J].铀矿冶,2006,25(4):173-176. CHEN Shihe,MA Shengrong,ZOU Wenjie.Application of plasma technology in mines[J].Uranium Mining and Metallurgy,2006,25(4):173-176.
    [14] 李文成,杜雪鹏.微波辅助破岩新技术在非煤矿的应用[J].铜业工程,2010,27(4):1-4. LI Wencheng,DU Xuepeng.Application of microwave-assisted rock breaking in metal mines[J].Copper Engineering,2010,27(4):1-4.
    [15] 吴景华.摩擦热-机械能联合碎岩理论与工艺的研究与实践[D].长春:吉林大学建设工程学院,2005. WU Jinghua.Research and application of friction heat-mechanical energy rock fragmentation theory and technology[D].Changchun:Jilin University,College of Construction Engineering,2005.
    [16] 郤保平,赵阳升,万志军,等.热力耦合作用下花岗岩流变模型的本构关系研究[J].岩石力学与工程学报,2009,28(5):956-967. XI Baoping,ZHAO Yangsheng,WAN Zhijun,et al.Study of constitutive equation of granite rheological model with thermo-mechanical coupling effects[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(5):956-967.
    [17] 张正禄,刘运荣,胡琼,等.油气钻井组合式破岩技术研究[J].石油钻探技术,2014,42(6):49-52. ZHANG Zhenglu,LIU Yunrong,HU Qiong,et al.Integrated rock-breaking methods in well drilling[J].Petroleum Drilling Techniques,2014,42(6):49-52.
    [18] 杜守继,刘华,职洪涛,等.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364. DU Shouji,LIU Hua,ZHI Hongtao,et al.Testing study on mechanical properties of post-high-temperature granite[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(14):2359-2364.
    [19] 孙瑞民,赵秀绍,汤凤林,等.热力剥离破碎岩石试验[J].地质科技情报,2006,25(4):96-100. SUN Ruimin,ZHAO Xiushao,TANG Fenglin,et al.Experimental research on thermal peel fragmentation of rock[J].Geological Science and Technology Information,2006,25(4):96-100.
    [20] 万志军,赵阳升,董付科,等.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,2008,27(1):72-77. WAN Zhijun,ZHAO Yangsheng,DONG Fuke,et al.Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(1):72-77.
    [21] 赵金昌,赵阳升,李义,等.花岗岩高温高压条件下冲击旋转破碎规律研究[J].岩土工程学报,2010,23(6):856-860. ZHAO Jinchang,ZHAO Yangsheng,LI Yi,et al.Percussive rotary drilling law of granite under high temperature and high pressure[J].Chinese Journal of Geotechnical Engineering,2010,23(6):856-860.
  • 期刊类型引用(8)

    1. 王旱祥,任京文,于长录,车家琪,邓君宇,徐鸿志,刘延鑫,朱晓洋. 天然气水合物举升管气液分离过程数值模拟与方案优选. 石油钻采工艺. 2023(02): 203-210 . 百度学术
    2. 王晓光,姜立芳,尹建国,刘荣波,朱绍东. 基于沉积法的海底天然气渗漏活动特征检测. 能源与环保. 2022(01): 196-201 . 百度学术
    3. 王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 . 百度学术
    4. 王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 . 百度学术
    5. 冯轩,翟亚若,王久星,韩金虎,陈映赫,马麟. 置换法联合压裂开采天然气水合物技术. 现代化工. 2021(12): 22-26 . 百度学术
    6. 陈静. 浅谈海域天然气水合物开采方法及风险控制. 科技风. 2020(01): 109-110 . 百度学术
    7. 李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 . 本站查看
    8. 李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  2415
  • HTML全文浏览量:  138
  • PDF下载量:  3427
  • 被引次数: 10
出版历程
  • 收稿日期:  2015-09-09
  • 修回日期:  2015-12-27
  • 刊出日期:  1899-12-31

目录

/

返回文章
返回