Processing math: 0%

井下外磁转子式涡轮发电机设计与试验研究

陈威

陈威. 井下外磁转子式涡轮发电机设计与试验研究[J]. 石油钻探技术, 2015, 43(6): 114-119. DOI: 10.11911/syztjs.201506021
引用本文: 陈威. 井下外磁转子式涡轮发电机设计与试验研究[J]. 石油钻探技术, 2015, 43(6): 114-119. DOI: 10.11911/syztjs.201506021
Chen Wei. Design and Experimental Research on the Downhole Turbine Generator with an Outer Magnetic Rotor[J]. Petroleum Drilling Techniques, 2015, 43(6): 114-119. DOI: 10.11911/syztjs.201506021
Citation: Chen Wei. Design and Experimental Research on the Downhole Turbine Generator with an Outer Magnetic Rotor[J]. Petroleum Drilling Techniques, 2015, 43(6): 114-119. DOI: 10.11911/syztjs.201506021

井下外磁转子式涡轮发电机设计与试验研究

基金项目: 

国家高技术研究发展计划("863"计划)项目"自动垂直钻井系统工程样机研制"(编号:2009AA093501)部分研究内容。

详细信息
    作者简介:

    陈威(1980—),男,安徽固镇人,2002年毕业于石油大学(华东)机械设计及制造专业,2005年获中国石油大学(华东)机械电子工程专业硕士学位,高级工程师,主要从事随钻测控技术井下控制与工具相关研究。

  • 中图分类号: TE924

Design and Experimental Research on the Downhole Turbine Generator with an Outer Magnetic Rotor

  • 摘要: 为了满足自动垂直钻井系统涡轮发电机寿命及功率需求,采用理论计算方法和仿真分析方法确定井下外磁转子式涡轮发电机电气参数,建立仿真分析模型,进行电磁场、场路耦合以及温度场分析,对发电机电磁特性、损耗以及温度变化进行数值模拟。理论计算和数值模拟结果表明,发电机输出功率达到设计额定功率800 W,在额定转速下的最大功率输出时定子稳态温升23 ℃。利用现场试验对理论计算与仿真数据以及发电机寿命进行验证,试验结果为额定转速下最大输出功率1 000 W,稳态定子温升20.5 ℃,仿真与试验数据基本吻合,发电机运行320 h后仍能正常工作。研究表明,井下外磁转子式涡轮发电机功率输出性能达到设计目标,可以为井下各类仪器设备用电源提供技术保障。
    Abstract: A design and experimental research on downhole outer magnetic rotor turbine alternator was proposed to fulfill the life and power requirements of the turbine alternator in the vertical drilling system.The electrical parameters of the alternator were designed by theoretical and simulation methods,a simulation model was built to carry out electromagnetic field,field-circuit coupling and thermal field simulation,the electromagnetic characteristics,loss and temperature increments data were gained by simulation.The analysis result showed that the power output the alternator reached design targets(800 W),and the maximum stable state tempreture increments at maximum power output were 23 ℃.Then a field experiment was carried out to verify the theoretical calculation and simulation.During the experiment,the stable maximum power output reached 1 000 W,stable state tempreture increments were 20.5 ℃,after 320 h field experiment,the alternator worked normally.The research and experiment shows that the performance of downhole outer magnetic rotor turbine alternator reaches design targets,and it might be a solution to power requirements of vertical drilling system and other downhole instruments.
  • 水力压裂在低孔低渗油气藏中应用广泛,其影响体现在不同方面。一方面,水力压裂可增加储层裂缝数量以及裂缝之间的连通性,对油气的增产具有较大贡献;另一方面,随之而来的微地震、环境污染等问题也不容忽视。国内外众多学者对水力压裂技术的影响先后进行了调查和分析[110]。其中,微地震监测是评价水力压裂效果的常用手段之一[1115],通过布置在邻井或者地面上的传感器探测水力压裂产生的微地震信号,并通过数据处理获取微地震震源的信息。随着微地震在时间和空间上的发生,监测结果连续不断更新,形成裂缝延伸的动态图[1617]。微地震测量速度快,现场应用方便,能够实时确定微地震事件的位置,并能确定水力裂缝的高度、长度和方位,但该技术仍存在许多不足,例如对噪声敏感度高、数据处理过程复杂以及严重依赖高精度地层速度模型等。

    一些研究人员尝试利用声波测井资料进行水力压裂效果评价[1826]。当井外存在裂缝时,直达斯通利波振幅会产生衰减[27]。特别是当裂缝中充填流体时,直达斯通利波振幅衰减显著[28]。在此过程中部分能量沿着射孔孔眼和压裂缝进入地层,部分能量形成了反射斯通利波[29]。然而,如何压制噪声信号以及进一步对近井压裂缝成像,成为制约斯通利波应用的关键因素。常规声波测井方法径向探测范围通常在3 m以内,无法满足远井眼处裂缝探测的需求。于是人们发展了基于声波反射波裂缝成像的远探测声波测井方法。刘鹏、李宁等人[3031]提出了一种时移远探测方法,在压裂前处理远探测资料获取井旁天然裂缝成像,并在压裂后再次测试,获取井旁天然裂缝和压裂裂缝的综合成像,通过对比二者的差异,获取井眼外数十米范围内压裂缝的发育情况。然而,当压裂缝密度较大时,地层速度模型将有所改变,此时传统的叠后偏移成像方法已明显不适用。

    针对上述问题,在基于声波测井资料的多尺度压裂缝评价方法基础上,通过研究形成了基于阵列声波测井的井下多尺度压裂效果评价方法,即对于近井处压裂缝,利用反射斯通利波对裂缝的宽度、延伸、分布等参数进行评价;对于远井处压裂缝,运用叠前深度偏移成像算法实现压裂缝的高精度成像。该方法在某油田页岩油水平井(X1井)进行了现场应用,验证了其有效性,为有效监测水力压裂效果、提高储层压裂效果评价精度提供了手段。

    基于反射斯通利波成像的流程如图1所示。从原始波形出发,经过数字带通滤波滤除背景噪声、拉东域滤波滤除井眼直达斯通利波信号、预测反褶积压制反射斯通利波多次波信号、共声源道集叠加压制相干噪声信号、上下行反射斯通利波分离与成像等5个处理步骤,获取反射斯通利波成像结果,反映近井处压裂缝的发育情况。基于成像结果的反射事件拾取和斯通利波反射振幅计算,进一步定量评价近井处压裂缝的发育密度与强度。

    图  1  近井处压裂缝成像的流程
    Figure  1.  Imaging process of near-wellbore fractures

    以X1井为例,近井压裂缝成像方法的应用效果如图2所示。通过对比滤波前后的波形,发现该方法可有效压制高阶模式波和低频噪声信号,从而获取较为纯净的斯通利波,包括直达斯通利波和反射斯通利波。图2中,第4道代表Radon滤波后的波形数据(LDST),可以发现其中只包含倾斜方向的反射斯通利波,这说明Radon滤波方法有效滤除了竖直分布的直达斯通利波;第5道代表预测反褶积处理后的波形(PDST),该处理方法目的是压制反射斯通利波的多次波信号;第6道代表反射斯通利波的共声源道集叠加处理结果,与叠加前波形相比,叠加使反射斯通利波有效压制了残余直达斯通利波等相干噪声信号,反射斯通利波更为清晰并且同相轴更为连续。进一步对上下行反射斯通利波做波分离,将井眼设置为对称轴,将下行反射斯通利波旋转180°,得到近井处压裂缝成像结果(第7道,UDST),发现上下行反射斯通利波同相轴连成一条直线,该直线穿过井眼的位置即为压裂缝所在位置。

    图  2  X1井斯通利波压裂缝成像处理结果
    Figure  2.  Imaging results of Stoneley wave for fractures in Well X1

    零时刻相交的上下行反射斯通利波对应一条过井压裂缝。因此,这2种反射斯通利波对应的振幅均能指示该缝的发育情况,基于此,提出了压裂缝拾取与定量评价方法。该方法具体为:分别沿上下行反射斯通利波的延伸方向,在时间–深度域开窗,计算窗口内反射斯通利波振幅总和。最后得到反射斯通利波振幅杆状图,见图2中第8道。其中,事件数代表近井处压裂缝数量,反射斯通利波振幅的强弱则代表压裂缝的发育情况,比如压裂缝张开度、延伸长度等。

    考虑井眼外网状压裂缝导致地层速度不均匀的问题,提出了适用于测井观测系统的叠前深度偏移成像方法,用于提升井眼外数十米范围内水力压裂缝成像的精度,其成像公式为:

    I{{(}}{\boldsymbol{x}}{{) = }}\int\limits_{{{\boldsymbol{x}}_{\mathrm{S}}}} {wm({{\boldsymbol{x}}_{\mathrm{S}}},{{\boldsymbol{x}}_{\text{R}}}, t({\boldsymbol{x}}) , p({\boldsymbol{x}}))} d{{\boldsymbol{x}}_{\mathrm{S}}} (1)
    \begin{split} &\;\\[-8pt] & 其中\qquad\qquad\qquad t({\boldsymbol{x}}) = {t_{\mathrm{S}}}({\boldsymbol{x}}) + {t_{\mathrm{R}}}({\boldsymbol{x}})\qquad \end{split} (2)
    p({\boldsymbol{x}}) = p({{\boldsymbol{x}}_{\text{R}}}) (3)

    式中: I({\boldsymbol{x}}) 为成像结果,mV;xSxR为炮检点坐标,m;x为成像点坐标,m; w 为成像权重系数;m为测井数据,mV; {t_{\mathrm{S}}} 为炮端旅行时,s; {t_{\mathrm{R}}} 为检波点端旅行时,s; t 为成像点总旅行时,s; p({\boldsymbol{x}}) 为成像点射线参数,s/m; p({{\boldsymbol{x}}_{\text{R}}}) 为检波点射线参数,s/m。

    常规Kirchhoff叠前深度成像仅考虑走时关系,可借助长观测孔径和密集接收器的数据在成像过程中的叠加来消除成像假象,而测井数据并不具备这一条件。此处针对测井观测系统的Kirchhoff叠前深度成像不仅考虑走时关系,同时还将接收端数据射线参数作为成像条件,避免了成像过程中的画弧过程,从而能够消除成像噪音。

    为了验证测井观测系统叠前深度偏移成像算法的有效性,用该算法处理X1井的声波测井资料。X1井3 525~3 615 m井段的传统叠后偏移成像结果如图3(a)所示,中间为井眼,左右分别为井眼向外50 m范围内储层中的裂缝成像结果。从图3(a)可观察到明显的压裂缝反射信号,但由于成像精度较差,裂缝无法清晰显现。图3(b)展示了测井观测系统叠前深度偏移成像结果,从图3(b)可清楚观察到裂缝形态,特别是大尺度压裂缝的成像聚焦效果得到明显增强。利用该算法可提升压裂缝成像的精度,成像范围可达50 m。

    图  3  X1井远井筒压裂裂缝远探测偏移成像结果
    Figure  3.  Migration imaging results by remote detection of fractures far from wellbore of horizontal well X1

    通常压裂缝既包含与井眼近垂直的主裂缝,还包含密度更大、角度随机分布的次级裂缝,它们共同构成了复杂压裂缝系统。为了综合评价井眼外数十米范围内压裂缝的发育情况,提出了基于远探测成像结果的反射斯通利波振幅评价方法。考虑到井眼外0~3 m范围内远探测反射斯通利波振幅受直达斯通利波等噪声干扰严重,并且反射斯通利波振幅可用于评价井眼外3 m范围内压裂缝的发育情况,因此以3~50 m远探测偏移图中振幅的平均值为远探测反射斯通利波振幅。它能定量评价井眼外3~50 m的压裂缝发育情况,其值越大,代表压裂缝越发育;反之,代表没有较多压裂缝。图4为X1井远井裂缝定量评价结果,第1道为自然伽马,第2道为深度,第3道为3525~3615 m井段的远探测偏移成像图(2个方框代表远探测反射波振幅的计算窗口),第4道为远探测反射斯通利波振幅计算结果。从第4道可以看出不同井深处反射斯通利波的振幅存在差异,特别是在压裂缝发育深度(3 525~3 575m)反射斯通利波振幅明显增大,这说明远探测反射斯通利波振幅能够定量评价井眼外3~50 m压裂缝的发育情况。

    图  4  X1井远井裂缝定量评价结果
    Figure  4.  Quantitative evaluation of fractures far from wellbore of horizontal well X1

    X1井是中国西部某油田丛式钻井平台X上的一口水平井,目的层为页岩油储层。该井实钻水平段长度1 360 m,页岩油储层的钻遇率大于80%。为了改善储层的渗透性,完井后实施了压裂。基于压裂设计方案,共压裂19段99簇。2021年底该井投产,在稳产高产大约6个月后,产液量出现阶梯性下降。下降原因可能与该地区天然断层/裂缝比较发育有关,天然裂缝与压裂缝构成了复杂裂缝系统。

    为评价压裂后的裂缝特征,以指导该平台低产井的治理和其他待钻井压裂方案的优化,该井进行了阵列声波测井。考虑到水平井井眼直径小、测量环境差,选择过钻头阵列声波测井仪(见图5)进行测井。仪器的测井模式有3种:1)单极声源的低频测井模式,主要目的是获得斯通利波信号;2)单极声源的宽频测井模式,主要目的是获得单极全波列波形数据;3)偶极声源的测井模式,目的是获取偶极四分量波形数据。在分析上述测井模式测得波形质量后,选择单极低频模式测得波形进行斯通利波提取及成像,评价近井眼处压裂缝发育情况;选择单极全频模式测得波形实施远探测处理,评价远井眼处压裂缝的发育情况。

    图  5  过钻头阵列声波测井仪示意
    Figure  5.  Array acoustic logger through the bit

    在利用提出的多尺度压裂缝成像方法评价压裂缝发育情况之前,需建立一套评价标准(见表1),将压裂效果分为好、中、差3个级别。当近井处和远井处的压裂缝均较为发育时,压裂效果为好,表示井眼外50 m范围内的压裂缝均较为发育;当近井处压裂缝不发育而远井处压裂缝发育,或者近井处压裂缝发育而远井处压裂缝不发育时,可判定压裂效果为中;当近井处和远井处压裂缝均不发育,则判定为压裂效果差。基于该评价标准,对X1井压裂效果进行评价,结果如图6所示,层段1~4和12~14近井处和远井处压裂缝均较为发育,压裂效果为好;层段5~9、11和16~19压裂效果为中;而层段10和15压裂缝不发育,压裂效果为差。

    表  1  基于声波测井资料的水力压裂评价标准
    Table  1.  Hydraulic fracturing evaluation criteria based on acoustic logging data
    近井筒压裂缝发育情况远井筒压裂缝发育情况压裂评价标准
    发育发育
    发育不发育
    不发育发育
    不发育不发育
    下载: 导出CSV 
    | 显示表格
    图  6  X1井基于声波测井资料的水力压裂缝评价效果
    Figure  6.  Hydraulic fracture evaluation effect of horizontal well X1 based on acoustic logging data

    针对单个压裂段,压裂液注入量通常与裂缝发育程度呈正相关关系。较高的注入量通常表明裂缝相对发育;反之,裂缝则较不发育。为判断基于声波测井资料的水力压裂裂缝评价的有效性,分析了X1井19段的压裂评价结果与压裂液注入量(见图7),第3、4和14段的压裂液注入量较高,超过1300 m3。第10和第15段的压裂效果较差,压裂液注入量确实较低,均低于1250 m3。然而,压裂液注入量与裂缝发育之间也存在一定差异,例如第8段的压裂效果评价结果表明,该段的压裂效果为中等(见图6),压裂液注入量却高达1561 m3

    图  7  X1井1-19压裂段的压裂液注入量
    Figure  7.  Fracturing fluid injection amount in fracturing stages 1–19 of horizontal well X1

    通过处理X1井水力压裂前的地震勘探数据可获取地震成像剖面,进一步对其实施属性提取便可得到地震蚂蚁体属性图,如图8所示。该图可表征X1水平井旁大尺度天然裂缝或断层的发育情况,从图8可观察到,第4段和第13段存在穿过X1井的天然裂缝。通过与图7对比,可以发现这2个压裂段也是压裂缝发育段,表明天然裂缝或断层的存在对压裂裂缝的形成是有益的。最终,天然裂缝和人工裂缝形成了一个复杂的裂缝系统。

    图  8  穿过X1井的地震蚂蚁属性图
    Figure  8.  Seismic ant attribute map across horizontal well X1

    基于阵列声波测井资料的多尺度压裂效果评价方法在X1井应用成功,说明利用声波测井技术可实现近井—远井压裂缝发育情况评价,这将为压裂方案的制定和油气田高效开发提供关键技术支撑。

    1)基于阵列声波测井的井下多尺度压裂效果评价方法,包括基于斯通利波的近井筒压裂缝成像和基于远探测反射斯通利波的远井筒压裂缝成像,能够精细展示井旁50 m范围内压裂缝的发育情况。

    2)针对近井筒压裂缝评价,提出的反射斯通利波提取、成像及裂缝定量表征方法,能够清晰展示近井处压裂缝发育情况;针对远井处压裂缝评价,提出的测井观测系统叠前远探测偏移成像方法,同时将反射斯通利波走时关系和接收端数据射线参数作为成像条件,有效压制了成像过程中产生的画弧噪声,提升了远井筒压裂缝成像的精度。

    3)利用X1井声波测井资料,采用多尺度压裂缝评价方法评价了该井的压裂效果,验证了该方法的有效性。

  • [1] 吕官云,孙峰,杨全进,等.一种捷联式稳定平台装置,中国:200510044509.7[P].2005-08-26. Lv Guanyun,Sun Feng,Yang Quanjin,et al.A strap down stabilization platform:CN,200510044509.7[P].2005-08-26.
    [2] 孙峰,吕官云,陈威,等. 捷联式自动垂直钻井稳定平台控制系统仿真研究[J].石油钻探技术,2011,39(5):91-95. Sun Feng,Lü Guanyun,Chen Wei,et al. Research on strap-down automatic vertical drilling system with the simulation of stable platform control[J]. Petroleum Drilling Techniques,2011,39(5):91-95.
    [3] 孙峰,吕官云,马清明.捷联式自动垂直钻井系统[J].石油学报,2011,32(2):360-363. Sun Feng,Lv Guanyun,Ma Qingming.A strap down automatic vertical drilling system[J].Acta Petrolei Sinica,2011,32(2):360-363.
    [4] 王义峰,刘庆龙,刘文庭,等.捷联式自动垂直钻井工具伺服控制设计及实现[J].石油钻探技术,2014,42(3):95-101. Wang Yifeng,Liu Qinglong,Liu Wenting,et al.Design and implementation of servo control of strap-down automatic vertical drilling system[J].Petroleum Drilling Techniques,2014,42(3):95-101.
    [5] 孙峰.捷联式自动垂直钻井系统稳定平台技术研究[J].青岛:中国石油大学(华东)石油工程学院,2012. Sun Feng.Research on stabilizing platform for strapdown automatic vertical drilling system technology[J].Qingdao:China University of Petroleum,School of Petroleum Engineering,2012.
    [6] 王锡洲.捷联式自动垂直钻井系统的研制及现场试验[J].石油钻探技术,2010,38(3):13-16. Wang Xizhou. Development and field test of automated strap-down vertical drilling system[J]. Petroleum Drilling Techniques,2010,38(3):13-16.
    [7] 张奎林,夏柏如.国产自动垂直钻井系统的改进与优化[J].断块油气田,2012,19(4):529-532. Zhang Kuilin,Xia Boru.Improvement and optimization on home-made automatic vertical drilling system[J].Fault-Block Oil Gas Field,2012,19(4):529-532.
    [8] 王燕,刘白雁,王科. 垂直钻井系统纠斜机构脉宽调制控制研究[J].石油钻探技术,2015,43(2):120-125. Wang Yan,Liu Baiyan,Wang Ke. PWM Control of the anti-deviation mechanism in the vertical drilling system[J].Petroleum Drilling Techniques,2015,43(2):120-125.
    [9] 张先勇,冯进,罗海兵,等.井下涡轮式发电机水力性能研究[J].机械研究与应用,2006,19(6):44-45. Zhang Xianyong,Feng Jin,Luo Haibing,et al.Hydraulic behavior research of under-well turbine generator[J].Mechanical Research Application,2006,19(6):44-45.
    [10] 菅志军,王智明,贺麦红,等.连续波钻井液脉冲发生器用磁力耦合器设计[J].石油机械,2008, 36(11):35-36. Jian Zhijun,Wang Zhiming,He Maihong,et al.Design of magnetic coupler of continuous wave drilling fluid pulse generator[J].China Petroleum Machinery,2008,36(11):35-36.
    [11] 李林,张连成,魏志刚,等.随钻测量中井下大功率发电技术的研究与试验[J].石油钻探技术,2008,36(5):24-27. Li Lin,Zhang Liancheng,Wei Zhigang,et al.Research and experiment of downhole powerful generator for measurement while drilling[J].Petroleum Drilling Techniques,2008,36(5):24-27.
    [12] 赵克中.磁力驱动技术与设备[M].北京:化学工业出版社,2004:21-22. Zhao Kezhong.Magnetic drive technology and device[M].Beijing:Chemical Industry Press,2004:21-22.
    [13] 彭勇,蒋庄德,王进全.自动垂直钻井工具用涡轮发电机磁力驱动器设计[J].石油钻采工艺,2014,36(1):126-128. Peng Yong,Jiang Zhuangde,Wang Jinquan.Design of the magnetic driver in turbine generators used in automatic vertical drilling[J].Oil Drilling Production Technology,2014,36(1):126-128.
    [14] 黄晓凡,林恩怀,干昌明.井下涡轮发电机系统特性分析与实验[J].石油钻探技术,2012,40(6):104-109. Huang Xiaofan,Lin Enhuai,Gan Changming.Performance analysis of downhole turbine alternator system and its experimental verification[J].Petroleum Drilling Techniques,2012,40(6):104-109.
    [15] 巩宪锋,马颖丹.井下涡轮发电机磁力传动机构的耦合磁场分析[J].机械设计与制造,2014(2):59-62. Gong Xianfeng,Ma Yingdan.Analysis of the coupling magnetic field of the magnetic transmission mechanism with downhole turbine generator[J].Machinery Design Manufacture,2014(2):59-62.
    [16] 周静,雷瑞利,常鹏.井下永磁发电机的设计与试验分析[J].微电机,2014,47(3):11-15. Zhou Jing,Lei Ruili,Chang Peng.Design and experimental study on downhole permanent magnet generator[J].Micromotors,2014,47(3):11-15.
    [17]

    Grabic S,Celanovic N,Katic V A.Permanent magnet synchronous generator cascade for wind turbine application[J].IEEE Transactions on Power Electronics,2008,23:1136-1142.

  • 期刊类型引用(4)

    1. 李宁,刘鹏,武宏亮,李雨生,张文豪,王克文,冯周,王浩. 远探测声波测井处理解释方法发展与展望. 石油勘探与开发. 2024(04): 731-742 . 百度学术
    2. LI Ning,LIU Peng,WU Hongliang,LI Yusheng,ZHANG Wenhao,WANG Kewen,FENG Zhou,WANG Hao. Development and prospect of acoustic reflection imaging logging processing and interpretation method. Petroleum Exploration and Development. 2024(04): 839-851 . 必应学术
    3. 刘平,刘东明,姬程伟,王璐,李栋,王志兴,王天,杜元凯. 水力压裂监测与诊断技术进展与组合应用. 测井技术. 2024(05): 721-730 . 百度学术
    4. 胡晓东,王雅晶,丘阳,易普康,蒋宗帅,熊壮. 矿场压裂停泵水击信号滤波效果评价指标研究. 石油钻探技术. 2024(06): 131-140 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  2515
  • HTML全文浏览量:  95
  • PDF下载量:  3329
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-10-27
  • 刊出日期:  1899-12-31

目录

/

返回文章
返回