立柱式钻井平台内孤立波载荷尺度效应研究

The Study on Scale Effect of Internal Solitary Wave Loads of Cylindrical Drilling Platforms

  • 摘要: 在海洋内孤立波作用下,立柱式钻井平台会产生大幅度的运动响应,影响钻井平台的作业效率与安全,其中平台内孤立波载荷的准确预测是关键。为此,以3类内孤立波理论(KdV、eKdV和MCC)的适用性条件为依据,通过构建两层流体中内孤立波对立柱式钻井平台强非线性作用的数值模拟方法,结合模型试验分析了立柱式钻井平台内孤立波载荷的尺度效应。结果表明,在大尺度条件下采用Morison公式和傅汝德-克雷洛夫公式分别计算内孤立波的水平力和垂向力仍然是可行的。此外,内孤立波载荷模型试验中,立柱式钻井平台内孤立波水平力及垂向力的尺度效应因流体黏性影响的不同而产生差异,受黏性影响较大的水平力尺度效应显著,而受黏性影响较弱的垂向力的尺度效应较弱,可以忽略。

     

    Abstract: Under internal solitary ocean waves, a cylindrical drilling platform would drift, which could affect the efficiency and safety of operations on the platform, so the accurate prediction of internal solitary wave load is critical. Based on the application conditions of the theories of three kinds of internal solitary waves (KdV, eKdV and MCC),the scale effects of internal solitary wave load of a cylindrical drilling platform were analyzed through numerical simulation for the strong nonlinear action of internal solitary wave in a two-layer fluid, and in model tests. The results showed that it was feasible to calculate horizontal and vertical forces of internal solitary waves in large scales by using the Morison formula and Froude-Krylov formula. In addition, in the model experiments of internal solitary wave load demonstrated that scale effect differences existed between horizontal and vertical forces.The scale effect was less on the horizontal force compared with vertical one due to fluid viscosity influence difference.The viscosity effect on vertical force might be neglected.

     

/

返回文章
返回