多相流全瞬态温度压力场耦合模型求解及分析

何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根

何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根. 多相流全瞬态温度压力场耦合模型求解及分析[J]. 石油钻探技术, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
引用本文: 何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根. 多相流全瞬态温度压力场耦合模型求解及分析[J]. 石油钻探技术, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
Citation: He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005

多相流全瞬态温度压力场耦合模型求解及分析

基金项目: 

国家自然科学基金重点项目“控压钻井测控理论及关键问题研究”(编号:51334003),国家自然科学基金面上项目“深层碳酸盐岩地层与井筒耦合作用机理与压力自动控制方法研究”(编号:51274221)、“控压钻井井筒多相流体瞬态变质量流动理论及工况解释方法研究”(编号:51274045)和“基于模型预测控制理论与状态机架构的控压钻井压力控制方法研究”(编号:51374223)联合资助.

详细信息
    作者简介:

    何淼(1989—),男,湖北荆门人,2011年毕业于中国石油大学(华东)工程力学专业,在读博士研究生,主要从事控压钻井、欠平衡钻井和井筒多相流方面的研究.

  • 中图分类号: TE21

Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow

  • 摘要: 为准确掌握高温高压条件下环空多相流的流动特性,基于井筒多相流、传热学理论,充分考虑循环流体物性参数随温度压力的变化,建立了适用于深井、超深井的井筒多相流全瞬态温度压力场耦合模型,并提出了迭代求解算法,以塔里木油田某深井为例分析了井筒瞬态温度、压力耦合变化规律.结果表明:循环8 h后井底钻井液的密度由1 360 kg/m3升至1 460 kg/m3,塑性黏度由8.6 mPa·s升至13.8 mPa·s;开始循环时井底压力迅速降低,循环0.2 h时降至最低,然后逐渐升高,最后趋于稳定;井底钻井液的密度和塑性黏度随循环时间增长而增大;气侵量对井底压力的影响最大,钻井液地面密度、排量、井口回压次之,钻井液地面塑性黏度的影响最小.分析结果可为深井、超深井水力参数设计提供理论指导.
    Abstract: To accurately identify the features of annular multiphase flow in high temperature high pressure (HTHP) conditions, a fully transient temperature and pressure coupling model for multiphase flow in deep or ultra-deep wells was established according to the theory of wellbore multiphase flow and heat transfer. Considering the changes of physical parameters of circulating fluid with temperature and pressure, and the iterative algorithm was proposed. In this paper, a deep well in Tarim Oilfield was analyzed for the wellbore transient temperature and pressure coupling. The results indicated that the drilling fluid density at bottomhole increased from 1 360 kg/m3 to 1 460 kg/m3, and the plastic viscosity increased from 8. 6 mPa·s to 13.8 mPa·s after circulating for 8 hours. Both the drilling fluid density and the bottomhole plastic viscosity increased over the circulating time, and further, the bottomhole pressure dropped linearly at initial circulation and then to the minimum at 0.2 h. Later, it increased logarithmically and tended to be finally stable. In view of the impact on bottomhole pressure, the factors are were prioritized in a descending order as follows:gas influx, surface drilling fluid density, displacement, wellhead back pressure, and surface drilling fluid plastic viscosity. An analysis of the results could provide certain theoretical guidance for the hydraulic parameter design of deep and ultra-deep wells.
  • 顺北油气田位于塔里木盆地顺托果勒低隆北缘,自上而下主要钻遇第四系—奥陶系全套地层,岩性种类多,地层非均质性强,具有特殊地层发育、压力系统复杂的特点[1-5]。该油气田超深井前期采用六开井身结构,普遍存在漏失、坍塌等问题。随着勘探开发的进一步深入,顺北西部地区井深已达8 000.00~8 800.00 m,油藏埋藏超深、二叠系易漏、古生界上部地层承压能力低、火成岩侵入体应力大,地层压力系统及岩石特性不明确,钻井未知因素多。若仍采用六开井身结构,井下故障多,造成钻井周期长、钻井成本高,因而需对超深井井身结构进行优化设计,但国内外可借鉴的经验较少。为此,针对顺北油气田原有井身结构存在的问题,利用钻井、测井和测试等资料对顺北油气田地层三压力剖面进行了精准描述,基于地层三压力剖面、地质工程必封点和后期定向钻井要求,优选出四开非常规井身结构。应用四开非常规井身结构的7口超深井钻井结果表明,钻井速度提高、井下故障减少、钻井周期缩短、钻井成本降低。

    顺北油气田自上而下主要钻遇第四系、新近系、古近系、白垩系、三叠系、二叠系、石炭系、泥盆系、志留系和奥陶系地层,目的层为奥陶系碳酸盐岩地层。油藏埋藏深度7 600.00 m左右,油层中部压力150~180 MPa,中部温度160~170 ℃,属于超高温高压油藏[6]

    从顺北油气田已钻井和正钻井的情况看,钻遇地层主要有以下地质特征:1)储层埋藏深,地层层序多,岩性差异大;2)易垮塌、易缩径层系多,如第四系、新近系、白垩系、三叠系砂岩发育,疏松易缩径;3)石膏层发育,易污染钻井液,导致钻井液性能变差;4)石炭系、泥盆系、志留系地层的承压能力低,志留系地层承压能力最低为1.38 kg/L;5)高压盐水层、高压气层发育,盐水层孔隙压力系数最高达1.95,高压气层孔隙压力系数最高达1.86,地层盐水侵入使钻井液性能变差,6)桑塔木组火成岩侵入体易坍塌;7)二叠系与奥陶系地层压力窗口窄;8)储集层溶洞、微裂缝发育,易坍塌、易发生井漏[5]

    顺北油气田前期部署的油气井采用六开井身结构(如图1所示)[7],钻井过程中,在四开揭开火成岩侵入体后,划眼困难,蹩钻严重,多次提高钻井液密度后发生井漏,阻卡严重。经过多次堵漏施工,长裸眼井段承压能力虽有提高,但尚不能满足火成岩侵入体安全钻进要求,被迫提前下入ϕ193.7 mm套管封隔火成岩侵入体以上近2 000.00 m长的复杂层段;五开采用ϕ165.1 mm钻头钻进,在钻穿奥陶系桑塔木组火成岩侵入体后,钻至井深7 271.00 m(奥陶系良里塔格组)中完;六开采用ϕ120.6 mm钻头、密度1.21 kg/L的钻井液钻进,钻至井深7 407.08 m(一间房组)时井口钻井液失返,注入597.1 m3密度为1.17 kg/L的钻井液,以平衡地层压力;进行中途测试作业时漏失钻井液1 344.42 m3

    图  1  已钻井井身结构
    Figure  1.  Casing program of drilled wells in Shunbei Oil and Gas Field

    分析认为,由于该油气田勘探程度低,钻井资料少,对地层的认识有限,六开井身结构不能及时封固桑塔木组火成岩侵入体以上地层,给下部火成岩侵入体钻进带来安全风险。六开井身结构经过调整后仍存在以下问题:

    1)套管层序多、钻井周期长;

    2)完钻井眼直径只有120.6 mm,而电成像测井仪器外径为127.0 mm,无法进行成像测井,不能满足录取资料的要求;

    3)为保证钻井安全,所用钻具的最小外径是88.9 mm,而适用于ϕ120.6 mm井眼套铣管的最大直径为88.9 mm,最大套铣直径只有69.6 mm,无法套铣钻具,处理井下故障的能力弱,钻井风险高;

    4)目前适用于ϕ120.6 mm井眼的定向仪器抗温能力一般低于170 ℃[8],抗高温定向仪器配套难度大。

    优化原则:1)有效封隔易发生漏失、井喷、坍塌、卡钻等井下故障的复杂地层,保证目的层段井眼直径满足完井、测井要求,提高井控能力;2)为目的层预留一开次。

    优化思路:1)目的层井眼条件满足油气发现、取心、测井和完井以及打捞等后续作业要求,钻井成本低;2)提高目的层段井控能力,强化一级井控,确保井控安全;3)降低钻井风险,避免小井眼钻井风险,提高钻井速度;4)采用提速新技术钻进目的层以上地层。

    基于上述优化原则及思路,围绕“高效、安全、快速”的要求,针对顺北油气田储层超深、二叠系易漏、古生界上部地层承压能力低、火成岩侵入体应力高带来的问题,利用该油气田已钻井的钻井资料和测录井资料建立地层三压力剖面,确定工程必封点,从“简化井身结构、优化井眼与套管直径、非常规井身结构设计”3方面对该油气田超深井井身结构设计进行优化[9],以期为顺北油气田高效经济开发提供技术支撑。

    利用顺北油气田多口已钻井的测井资料,应用Drillworks软件[10]计算地层的孔隙压力、破裂压力和坍塌压力,并与已钻井的钻井资料、岩心力学试验结果结合对计算结果进行修正,得到了顺北油气田较为精确的地层三压力剖面,如图2所示。

    图  2  顺北油气田地层三压力剖面
    Figure  2.  Formation three-pressure profile of Shunbei Oil and Gas Field

    图2可知:二叠系以上地层压力正常,而其下部的石炭系、志留系、奥陶系地层存在异常高压。

    顺北1号断裂带和5号断裂带北部桑塔木组火成岩侵入体以上地层为正常压力地层,孔隙压力当量密度均小于1.23 kg/L;石炭系与志留系地层孔隙压力相对较高,最大孔隙压力当量密度为1.25 kg/L;坍塌压力偏高,泥岩段地层坍塌压力当量密度达1.28 kg/L,其中志留系地层坍塌压力当量密度高达1.30 kg/L,需增强钻井液的抑制防塌性能;破裂压力普遍较高,整体破裂压力当量密度为1.75~2.15 kg/L。

    顺北1号断裂带桑塔木组火成岩侵入体坍塌压力异常,部分井存在凝灰岩或辉绿岩地层,纯凝灰岩地层坍塌压力当量密度达1.60 kg/L,纯辉绿岩地层坍塌压力当量密度达1.70 kg/L。该地层破裂压力较高,破裂压力当量密度为1.97~2.15 kg/L。

    通过分析地层三压力剖面和地层承压能力,考虑二叠系、火成岩侵入体等复杂地层,为保障长裸眼井壁的稳定,确定了2个地质工程必封点:

    1)必封点1。桑塔木组以上砂泥岩地层的承压能力低,而钻进桑塔木组火成岩侵入体时需使用较高密度的钻井液。因此,桑塔木组顶部为必封点。

    2)必封点2。奥陶系一间房组以上泥岩地层易垮塌,需使用密度1.30~1.32 kg/L的钻井液钻进,而其下部裂缝性地层的压力系数为1.05~1.17,使用高密度钻井液钻进易漏失。因此,一间房组顶部为必封点。

    通过增强钻井液的随钻封堵能力,提高地层承压能力,可在同一开次钻开二叠系易漏地层和志留系易塌地层。考虑桑塔木组地层承压能力高及火成岩侵入体发育的情况,将ϕ244.5 mm套管下至桑塔木组顶部,将井身结构优化为四开井身结构(见图3),完钻井眼直径为149.2 mm。

    图  3  长裸眼井身结构
    Figure  3.  Casing program of long open hole horizontal well

    为了避免二叠系复漏影响下部钻井速度,采用ϕ273.1 mm套管封隔二叠系易漏层,采用ϕ241.3 mm钻头钻进下部地层,扩孔下入ϕ219.0 mm×ϕ244.0 m膨胀管[11],临时封隔东河塘组和柯坪塔格组,以提高井筒承压能力,采用ϕ215.9 mm钻头钻入一间房组地层4.00 m,悬挂ϕ177.8 mm套管,ϕ177.8 mm套管比膨胀管长100.00 m,采用ϕ149.2 mm钻头钻至完钻井深(见图4)。

    图  4  膨胀管临时封隔低压地层的四开井身结构
    Figure  4.  Casing program of temporarily isolating low-pressure formation with expandable tube

    为了保证完钻井眼直径不小于149.2 mm和钻井安全,综合考虑二叠系地层易漏及东河塘组和柯坪塔格组地层承压能力低的问题[12],采用ϕ339.7 mm套管封隔二叠系及以上地层,ϕ244.5 mm套管封隔桑塔木组及以上地层,先悬挂ϕ244.5 mm套管,再回接至井口,ϕ177.8 mm套管进入一间房组1.00 m,设计成五开井身结构(见图5)。

    图  5  增加ϕ339.7 mm套管下深封隔二叠系地层的五开井身结构
    Figure  5.  Casing program of increasing the setting depth of ϕ339.7 mm casing to seal the Permian

    1)为满足完钻井眼直径不小于149.2 mm的要求,将非常规井身结构与常规井身结构的设计方法相结合,采用ϕ298.4 mm套管封隔二叠系易漏地层,然后采用ϕ269.9 mm钻头钻进,将井眼直径扩至311.1 mm,下入ϕ244.5 mm直连扣套管,封隔志留系复杂地层,提高地层承压能力,优化形成五开非常规井身结构(见图6)。

    图  6  五开非常规井身结构
    Figure  6.  Unconventional five-spud casing program

    2)为满足完钻井眼直径不小于149.2 mm的要求,同时克服非五开常规井身结构开次多、现有钻井工艺技术难以实现的缺点,利用随钻堵漏技术将二叠系地层的承压能力提高至1.30 kg/L以上,并提高井下故障处理能力,以满足地质资料录取、分段改造的要求,优化形成了四开非常规井身结构(见图7)。

    图  7  四开非常规井身结构
    Figure  7.  Unconventional four-spud casing program

    上述5种井身结构均满足录取地质资料及完井的要求,因此,对其钻井周期、钻井成本进行了预测,并分析了其优缺点,结果见表1

    表  1  不同井身结构优缺点对比
    Table  1.  Comparison on the advantages and disadvantages of different casing program
    井身结构完钻井眼
    直径/mm
    钻井周期/
    d
    钻井成本/
    万元
    优点缺点
    五开长裸眼ϕ244.5 mm套管直下149.21654 179 钻井难度低,钻井周期较短 裸眼段长,井壁稳定难度大
    五开长裸眼ϕ244.5 mm套管悬挂回接149.21794 421 钻井难度低
    四开扩孔下膨胀管149.21855 077 机械方式封隔二叠系、志留系地层,利于安全钻井 膨胀管下入段长,存在风险
    五开ϕ339.7 mm套管封隔二叠系地层149.22156 803 机械方式封隔二叠系、志留系地层,利于安全钻井, ϕ339.7 mm套管下入难度大,钻井周期长,需采用钻深8 000 m以上钻机
    五开非常规149.22004 991 机械方式封隔二叠系、志留系,利于安全钻井 井眼开次多,采用常规钻井技术难以实现,钻井周期长
    四开非常规143.91583 897 钻井周期短、钻井成本低,钻井难度低 裸眼段长,井壁稳定难度大
    下载: 导出CSV 
    | 显示表格

    表1可以看出,5种井身结构中,四开非常规井身结构钻井周期最短,钻井成本低,钻井难度相对较小。在目前长裸眼井壁稳定技术趋于成熟的情况下,推荐采用四开非常规井身结构。

    顺北油气田7口井采用了四开非常规井身结构,并采用镶嵌成膜强封堵钾胺基聚磺钻井液解决长裸眼井壁失稳的问题,钻进二叠系地层时将钻井液密度调至1.24~1.25 kg/L,钻进志留系地层时将钻井液密度调至1.30 kg/L,以抑制井壁垮塌,并利用随钻承压堵漏技术将二叠系地层承压能力提高至1.30 kg/L。与采用六开井身结构的井相比,这7口井机械钻速提高30%~40%,钻井周期缩短33~45 d,柯坪塔格组地层平均井径扩大率为24.8%,桑塔木组地层平均井径扩大率为23.5%,均顺利钻达储集体,实现了“高效、安全、快速”的钻井目的。

    1)利用测井资料计算出地层的孔隙压力、破裂压力和坍塌压力,并与钻井资料和岩石力学试验结果结合对计算结果进行修正,得到了顺北油气田较为精确的地层三压力剖面,并据此确定了桑塔木组顶部和一间房组顶部2个地质工程必封点。

    2)根据地质工程必封点,综合考虑超深定向钻井基本原则和要求,设计出5种井身结构,通过预测5种井身结构的钻井周期、钻井成本,分析5种井身结构的优缺点,选用了四开非常规井身结构。

    3)顺北油气田采用四开非常规井身结构,提高了钻井速度,减少了井下故障,缩短了钻井周期、降低了钻井成本,满足了钻井、测井和完井要求。

    4)为保障顺北油气田后期开发及修井作业需求,应尽量采用相同的井身结构,以避免过多采用不同的非常规井身结构,增大后期开发、维护管理难度。

  • [1] 曾义金,刘建立.深井超深井钻井技术现状和发展趋势[J].石油钻探技术,2005,33(5):1-5. Zeng Yijin,Liu Jianli.Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J].Petroleum Drilling Techniques,2005,33(5):1-5.
    [2] 李根生,窦亮彬,田守嶒,等.酸性气体侵入井筒瞬态流动规律研究[J].石油钻探技术,2013,41(4):8-14. Li Gensheng,Dou Liangbin,Tian Shouceng,et al.Characteristics of wellbore transient flow during sour gas influx[J].Petroleum Drilling Techniques,2013,41(4):8-14.
    [3] 吴晓东,王庆,何岩峰.考虑相态变化的注CO2井井筒温度压力场耦合计算模型[J].中国石油大学学报:自然科学版,2009,33(1):73-77. Wu Xiaodong,Wang Qing,He Yanfeng.Temperature-pressure field coupling calculation model considering phase behavior change in CO2 injection well borehole[J].Journal of China University of Petroleum:Edition of Natural Science,2009,33(1):73-77.
    [4] 宋洵成,韦龙贵,何连,等.气液两相流循环温度和压力预测耦合模型[J].石油钻采工艺,2012,34(6):5-9. Song Xuncheng,Wei Longgui,He Lian,et al.A coupled model for wellbore temperature and pressure prediction of gas-liquid drilling fluid[J].Oil Drilling Production Technology,2012,34(6):5-9.
    [5] 陈林,孙雷,彭彩珍,等.注CO2井筒温度场分布规律模拟研究[J].断块油气田,2009,16(6):82-84. Chen Lin,Sun Lei,Peng Caizhen,et al.Simulation of temperature field for CO2 injection well bore[J].Fault-Block Oil Gas Field,2009,16(6):82-84.
    [6]

    Hasan A R,Kabir C S,Wang Xiaowei.Wellbore two-phase flow and heat transfer during transient testing[J].SPE Journal,1998,3(2):174-180.

    [7]

    Izgec B,Kabir C S,Zhu D,et al.Transient fluid and heat flow modeling in coupled wellbore/reservoir systems[J].SPE Reservoir Evaluation Engineering,2007,10(3):294-301.

    [8]

    Caetano E F,Shoham O,Brill J P.Upward vertical two-phase flow through an annulus:part 2:modeling bubble,slug,and annular flow[J].Journal of Energy Resources Technology,1992,114(1):14-30.

    [9]

    Hasan A R,Kabir C S.A study of multiphase flow behavior in vertical wells[J].SPE Production Engineering,1988,3(2):263-272.

    [10]

    Lage A C V M,Time R W.Mechanistic model for upward two-phase flow in annuli[R].SPE 63127,2000.

    [11]

    Perez-Tellez C,Smith J R,Edwards J K.A new comprehensive,mechanistic model for underbalanced drilling improves wellbore pressure predictions[J].SPE Drilling Completion,2003,18(3):199-208.

    [12]

    Gao Changhong.Empirical heat transfer model for slug flow and bubble flow in vertical subsea pipes[R].SPE 85651,2003.

    [13]

    Tang C C.A study of heat transfer in non-boiling two-phase gas-liquid flow in pipes for horizontal,slightly inclined,and vertical orientations[D].Stillwater:Oklahoma State University,2011.

    [14]

    Lee A L,Gonzalez M H,Eakin B E.The viscosity of natural gases[J].Journal of Petroleum Technology,1966,18(8):997-1000.

    [15]

    Friend D G,Roder H M.The thermal conductivity surface for mixtures of methane and ethane[J].International Journal of Thermophysics,1987,8(1):13-26.

    [16]

    Adewale Kareem Lateef,James Omeke.Specific heat capacity of natural gas;expressed as a function of its specific gravity and temperature[R].SPE 150808,2011.

    [17]

    Sutton R P.An improved model for water-hydrocarbon surface tension at reservoir conditions[R].SPE 124968,2009.

    [18]

    McMordie W C Jr,Bland R G,Hauser J M.Effect of temperature and pressure on the density of drilling fluids[R].SPE 11114,1982.

    [19] 李相方,管丛笑,隋秀香,等.环形井眼气液两相流流动规律研究[J].水动力学研究与进展:A辑,1998,13(4):422-429. Li Xiangfang,Guan Congxiao,Sui Xiuxiang,et al.Circular hole flow law of gas liquid two phase flow study[J].Journal of Hydrodynamics:A Serial,1998,13(4):422-429.
    [20] 李梦博,柳贡慧,李军,等.考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J].石油钻探技术,2014,42(5):74-79. Li Mengbo,Liu Gonghui,Li Jun,et al.Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J].Petroleum Drilling Techniques,2014,42(5):74-79.
    [21] 何淼,柳贡慧,李军,等.气侵期间岩屑运移规律研究[J].科学技术与工程,2014,14(16):27-31. He Miao,Liu Gonghui,Li Jun,et al.The research of cuttings migration during gas invasion[J].Science Technology and Engineering,2014,14(16):27-31.
  • 期刊类型引用(5)

    1. 罗莉,冯全源,何璇,刘彬. 基于恒定功率的热式流量计设计与测试. 仪表技术与传感器. 2024(01): 41-45+75 . 百度学术
    2. 冯爽,魏勇,杜雪梅,李冰,刘杰,陈强,林斯. 基于时域积分的温差流量传感器仿真与试验. 石油机械. 2024(04): 110-119 . 百度学术
    3. 陈强,刘国权,王志杰,魏宝军,冯爽,魏勇,甘如饴. 井下流量监测系统软件设计. 仪器仪表与分析监测. 2024(04): 25-29 . 百度学术
    4. 陈强,陈猛,袁超,陈涛,陈文辉,刘国权. 致密油藏水平井阵列温差流量数据反演方法. 测井技术. 2024(06): 781-788 . 百度学术
    5. 林斯,魏勇,魏宝军,刘杰,魏磊. 基于时域积分的热式流量检测模型与FPGA实现. 传感器与微系统. 2023(09): 85-88 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  3878
  • HTML全文浏览量:  90
  • PDF下载量:  4328
  • 被引次数: 8
出版历程
  • 收稿日期:  2014-07-09
  • 修回日期:  2014-11-26
  • 刊出日期:  1899-12-31

目录

/

返回文章
返回