多级压裂诱导应力作用下天然裂缝开启规律研究

刘雨, 艾池

刘雨, 艾池. 多级压裂诱导应力作用下天然裂缝开启规律研究[J]. 石油钻探技术, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004
引用本文: 刘雨, 艾池. 多级压裂诱导应力作用下天然裂缝开启规律研究[J]. 石油钻探技术, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004
Liu Yu, Ai Chi. Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004
Citation: Liu Yu, Ai Chi. Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004

多级压裂诱导应力作用下天然裂缝开启规律研究

基金项目: 

国家自然科学"基于混沌理论煤层气井压裂孔裂隙分形演化与渗流特征研究"(编号:51274067)资助。

详细信息
    作者简介:

    刘雨(1988-),男,河北景县人,2011年毕业于东北石油大学石油工程专业,2014年获东北石油大学油气井工程专业硕士学位,助理工程师,主要从事钻井工程设计与科研工作。

    通讯作者:

    艾池,(0459)6503073,aichi2001@163.com

  • 中图分类号: TE357.1+1

Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing

  • 摘要: 非常规储层多级压裂过程中,诱导应力是影响天然裂缝是否开启和压裂效果的重要因素。根据岩石力学理论和天然裂缝的受力状态,推导出压裂过程中地层应力分布计算模型,得到天然裂缝发生张性破坏和剪切破坏开启的力学条件。黑185井的模型计算结果表明:水平井压裂时存在诱导应力,由于诱导应力的影响,沿井筒方向的地应力增大1.70 MPa,地应力状态发生改变;考虑诱导应力的天然裂缝开启所需的压裂最小泵压为29.27 MPa;不考虑诱导应力的压裂最小泵压为26.31 MPa。研究结果表明,多级压裂产生的诱导应力使天然裂缝开启变得困难,诱导应力增大,天然裂缝开启所需的泵压增大,二者呈线性关系,实际压裂设计时应考虑诱导应力的影响。
    Abstract: During multi-stage fracturing in unconventional reservoirs, induced stress is the key factor in natural fracture opening and fracturing effets.The in-situ stress distribution analytical model was derived, and the mechanical conditions under which natural fractures initiated due to tensile failure and shear failure were obtained based on rock mechanics analysis.Stress distribution of Well Hei 185 by the model showed that induced stress existed in horizontal well fracturing and it made the in-situ stress along wellbore increased 1.70 MPa and the state of the in-situ stress changed.If induced stress was taken into account, minimum pump pressure required to activate natural fractures was 29.27 MPa rather than 26.31 MPa.The induced stress in multi-stage fracturing made the activation of natural fractures difficult.With the increase of induced stress, pump pressure to activate natural fractures increases, and there is a linear relation between induced stress and pump pressure.The induced stress should be considered into account in hydraulic fracturing design.
  • [1] 张应安.松辽盆地致密砂岩气藏水平井多级压裂现场实践:以长深D平2井为例[J].天然气工业, 2011, 31(6):46-48. Zhang Ying’an.Multi-stage frac treatment in horizontal wells of tight sandstone gas reservoir in the Songliao Basin:a case history of the horizontal well Changshen D2[J].Natural Gas Industry, 2011, 31(6):46-48.
    [2] 唐颖, 张金川, 张琴, 等.页岩气井水力压裂技术及其应用分析[J].天然气工业, 2010, 30(10):33-38. Tang Ying, Zhang Jinchuan, Zhang Qin, et al.An analysis of hydraulic fracturing technology in shale gas wells and its application[J].Natural Gas Industry, 2010, 30(10):33-38.
    [3] 李玉伟, 艾池, 张博文, 等.同步压裂对井间裂缝特性的影响[J].断块油气田, 2013, 20(6):779-782. Li Yuwei, Ai Chi, Zhang Bowen, et al.Influence of synchronous volume fracturing on interwell fracture characteristics[J].Fault-Block Oil Gas Field, 2013, 20(6):779-782.
    [4] 赵崇镇.深层砂砾岩水平井组立体缝网压裂优化技术[J].石油钻探技术, 2014, 42(5):95-99. Zhao Chongzhen.3D fracturing network optimization techniques for horizontal wells in sandstone-conglomerate formations[J].Petroleum Drilling Techniques, 2014, 42(5):95-99.
    [5] 齐银, 白晓虎, 宋辉, 等.超低渗透油藏水平井压裂优化及应用[J].断块油气田, 2014, 21(4):483-485, 491. Qi Yin, Bai Xiaohu, Song Hui, et al.Fracturing optimization and application of horizontal wells in ultra-low permeability reservoir[J].Fault-Block Oil and Gas Field, 2014, 21(4):483-485, 491.
    [6] 陈作, 何青, 王宝峰, 等.大牛地气田长水平段水平井分段压裂优化设计技术[J].石油钻探技术, 2013, 41(6):82-85. Chen Zuo, He Qing, Wang Baofeng, et al.Design optimization of staged fracturing for long lateral horizontal wells in Daniudi Gas Field[J].Petroleum Drilling Techniques, 2013, 41(6):82-85.
    [7] 刘力铭, 郭建春, 卢聪, 等.二次加砂压裂技术在樊131区块樊134-1井的应用[J].油气地质与采收率, 2014, 21(1):107-110. Liu Liming, Guo Jianchun, Lu Cong, et al.Application for secondary sand fracturing technology in well Fan 134-1, Fan 131 block[J].Petroleum Geology and Recovery Efficiency, 2014, 21(1):107-110.
    [8] 周德华, 焦方正, 贾长贵, 等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术, 2014, 42(1):75-80. Zhou Dehua, Jiao Fangzheng, Jia Changgui, et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques, 2014, 42(1):75-80.
    [9] 何青, 秦玉英, 姚昌宇, 等.鄂尔多斯盆地南部致密油藏水平井分段压裂技术[J].断块油气田, 2014, 21(6):816-818. He Qing, Qin Yuying, Yao Changyu, et al.Staged fracturing technology of horizontal well for tight oil reservoir in south Ordos Basin[J].Fault-Block Oil and Gas Field, 2014, 21(6):816-818.
    [10] 李勇明, 王中武, 郭建春, 等.天然裂缝开启前后的煤层压裂液滤失计算[J].油气井测试, 2006, 15(1):8-9. Li Yongming, Wang Zhongwu, Guo Jianchun, et al.Calculation of fracturing fluid leakoff in coal bed with the reopened natural fractures[J].Well Testing, 2006, 15(1):8-9.
    [11]

    Gale Julia F W.Natural fractures in the Barnett Shale and their important for hydraulic fracture treatment[J].American Association of Petroleum Geologists Bulletin, 2007, 91(4):603-622.

    [12] 才博, 丁云宏, 卢拥军, 等.提高改造体积的新裂缝转向压裂技术及其应用[J].油气地质与采收率, 2012, 19(5):108-110. Cai Bo, Ding Yunhong, Lu Yongjun, et al.Study and application of new in-fissure fracturing technique for improving stimulated reservoir volume[J].Petroleum Geology and Recovery Efficiency, 2012, 19(5):108-110.
    [13] 彭春耀.层状页岩水力压裂裂缝与岩体弱面的干扰机理研究[J].石油钻探技术, 2014, 42(4):32-36. Peng Chunyao.Mechanism of interaction between hydraulic fractures and weak plane in layered shale[J].Petroleum Drilling Techniques, 2014, 42(4):32-36.
    [14] 李扬, 邓金根, 蔚宝华, 等.储/隔层岩石及层间界面性质对压裂缝高的影响[J].石油钻探技术, 2014, 42(6):80-86. Li Yang, Deng Jingen, Yu Baohua, et al.Effects of reservoir rock/barrier and interfacial properties on hydraulic fracture height containment[J].Petroleum Drilling Techniques, 2014, 42(6):80-86.
    [15]

    Blanton T L.Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[R].SPE 15261, 1986.

    [16]

    Warpinski N R, Teufel L W.Influence of geologic discontinuities on hydraulic fracture propagation[J].Journal of Petroleum Technology, 1987, 21(3):209-220.

    [17] 李士斌, 秦齐, 张立刚.火山岩气藏体积压裂多裂缝协同效应及控制机理[J].断块油气田, 2014, 21(6):742-745. Li Shibin, Qin Qi, Zhang Ligang.Synergistic effect and control mechanism of volume fracturing fractures for volcano rock gas reservoir[J].Fault-Block Oil Gas Field, 2014, 21(6):742-745.
    [18] 邵尚奇, 田守嶒, 李根生, 等.泥页岩地层水力裂缝延伸方位研究[J].石油钻探技术, 2014, 42(3):27-31. Shao Shangqi, Tian Shouceng, Li Gensheng, et al.Propagating orientation of hydraulic fractures in muddy shale formation[J].Petroleum Drilling Techniques, 2014, 42(3):27-31.
    [19]

    Beugelsdijk L J L, de Pater C J, Sato K.Experimental hydraulic fracture propagation in a multi-fractured medium[R].SPE 59419, 2000.

    [20] 金衍, 张旭东, 陈勉.天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J].石油学报, 2005, 26(6):113-118. Jin Yan, Zhang Xudong, Chen Mian.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica, 2005, 26(6):113-118.
    [21] 周健, 陈勉, 金衍, 等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报, 2007, 28(5):109-113. Zhou Jian, Chen Mian, Jin Yan, et al.Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J].Acta Petrolei Sinica, 2007, 28(5):109-113.
    [22] 陈勉, 金衍, 张广清.石油工程岩石力学基础[M].北京:石油工业出版社, 2011:38-41. Chen Mian, Jin Yan, Zhang Guangqing.Petroleum engineering rock mechanics basis[M].Beijing:Petroleum Industry Press, 2011:38-41.
  • 期刊类型引用(1)

    1. 曲鸿雁,胡佳伟,周福建,史纪龙,刘成. 深层裂缝性致密砂岩气藏基质–裂缝气体流动机理. 石油钻探技术. 2024(02): 153-164 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  5282
  • HTML全文浏览量:  112
  • PDF下载量:  5080
  • 被引次数: 1
出版历程
  • 收稿日期:  2014-09-08
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回