Water Fracturing with Continuous Sand for Horizontal Wells in the Pengshui Block
-
摘要: 为了提高常温低压页岩气藏的开采效益,开展了彭水区块水平井清水连续加砂压裂技术应用研究。根据前期邻井同层的压裂数据,进行了彭页4HF井的压力预测和拟合,论证了清水加砂压裂的可行性。计算表明,彭水地区清水加砂时地面施工压力随射孔段深度增加而升高,射孔段深度不超过4 340 m时,施工压力不会超过限压91.0 MPa。彭页4HF井压裂施工过程中,根据压力变化情况实时调整优化压裂方案,逐步降低降阻剂浓度,直至完全停用降阻剂。彭页4HF井后4段全程清水连续加砂压裂,射孔段最深为2 434.0 m,施工压力最高69.2 MPa,压裂加砂符合率105.9%,单井压裂液费用降低约400万元。研究结果表明,清水连续加砂压裂地面施工压力与射孔段深度呈正相关关系,清水连续加砂压裂技术可大幅降低压裂成本。Abstract: In order to improve recovery efficiency of normal temperature and low pressure shale gas reservoirs, the applicability of water fracturing technology with continuous sand for horizontal wells in the Pengshui Block was investigated.Base on preliminary fracture data from the same layers in offset wells, pressure prediction and fitting were made for Well Pengye 4HF in order to demonstrate the feasibility of water fracturing with sand.Calculation results showed that the operation pressure increased with the perforation depth in water fracturing in the Pengshui Block and it would not exceed the limit of 91 MPa as long as the perforation depth was no more than 4 340 m.According to the change of operation pressure, fracturing scheme of Well Pengye 4HF was adjusted and optimized in real-time, and tests were conducted to gradually reduce the concentration of resistance reducing agent until it was completely abandoned.In the last four sections of the well, water fracturing with continuous sand was performed, in which the maximum perforating depth was 2 434.0 m, the highest operation pressure was 69.2 MPa.cost fracturing fluid was reduced by about 4 million yuan.The results showed that operation pressure has a positive correlation with the perforation depth when conducting water fracturing with continuous sand.The application of the technology could greatly reduce the cost of fracturing fluid.
-
-
[1] 陈尚斌, 朱炎铭, 王红岩, 等.中国页岩气研究现状与发展趋势[J].石油学报, 2010, 31(4):689-694. Chen Shangbin, Zhu Yanming, Wang Hongyan, et al.Research status and trends of shale gas in China[J].Acta Petrolei Sinica, 2010, 31(4):689-694. [2] 张艺耀, 王世彬, 郭建春.页岩地层压裂工艺新进展[J].断块油气田, 2013, 20(3):278-281. Zhang Yiyao, Wang Shibin, Guo Jianchun.New progress of hydraulic fracturing technology for shale formation[J].Fault-Block Oil Gas Field, 2013, 20(3):278-281. [3] 王素兵.清水压裂工艺技术综述[J].天然气勘探与开发, 2005, 28(4):39-42. Wang Subing.Riverfrac treatment[J].Natural Gas Exploration and Development, 2005, 28(4):39-42. [4] 才博, 史原鹏, 李拥军, 等.提高清水压裂人工裂缝导流能力新技术研究:以乌兰花凹陷兰5井为例[J].油气井测试, 2013, 22(4):10-12. Cai Bo, Shi Yuanpeng, Li Yongjun, et al.Study on improving water fracturing artificial fracture conductivity:taking Well Lan5 as an example in Wulanhua Depression[J].Well Testing, 2013, 22(4):10-12. [5] 蒋廷学, 贾长贵, 王海涛, 等.页岩气网络压裂设计方法研究[J].石油钻探技术, 2011, 39(3):36-40. Jiang Tingxue, Jia Changgui, Wang Haitao, et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques, 2011, 39(3):36-40. [6] Craig L Cipolla.Modeling production and evaluating fracture performance in unconventional gas reservoirs[R].SPE 118536, 2009.
[7] 吴顺林, 李宪文, 张矿生, 等.一种实现裂缝高导流能力的脉冲加砂压裂新方法[J].断块油气田, 2014, 21(1):110-113. Wu Shunlin, Li Xianwen, Zhang Kuangsheng, et al.A new method of pulse sand fracturing to achieve high conductivity of fracture[J].Fault-Block Oil Gas Field, 2014, 21(1):110-113. [8] 李庆辉, 陈勉, Wang Fred P, 等.工程因素对页岩气产量的影响:以北美Haynesville页岩气藏为例[J].天然气工业, 2012, 32(4):1-6. Li Qinghui, Chen Mian, Wang Fred P, et al.Influences of engineering factors on shale gas productivity: a case study from the Haynesville shale gas reservoir in North America[J].Natural Gas Industry, 2012, 32(4):1-6. [9] 李达, 贾建鹏, 滕飞启, 等.压裂施工过程中的井底压力计算[J].断块油气田, 2013, 20(3): 384-387. Li Da, Jia Jianpeng, Teng Feiqi, et al.Calculation of bottomhole pressure during fracturing[J].Fault-Block Oil Gas Field, 2013, 20(3):384-387. [10] 赵金洲, 王松, 李勇明.页岩气藏压裂改造难点与技术关键[J].天然气工业, 2012, 32(4):46-49. Zhao Jinzhou, Wang Song, Li Yongming.Difficulties and techniques in the fracturing treatment of shale gas reservoirs[J].Natural Gas Industry, 2012, 32(4):46-49. [11] 周成香, 周玉仓, 李双明, 等.川东南页岩气井压裂降压技术[J].石油钻探技术, 2014, 12(4):42-47. Zhou Chengxiang, Zhou Yucang, Li Shuangming, et al.Fracturing pressure reducing technique for shale gas well in the Southeastern Sichuan[J].Petroleum Drilling Techniques, 2014, 42(4):42-47. [12] 贾长贵, 路保平, 蒋廷学, 等.DY2HF深层页岩气水平井分段压裂技术[J].石油钻探技术, 2014, 42(2):85-90. Jia Changgui, Lu Baoping, Jiang Tingxue, et al.Multi-stage horizontal well fracturing technology in deep shale gas Well DY2HF[J].Petroleum Drilling Techniques, 2014, 42(2):85-90. [13] 蒋廷学, 卞晓冰, 袁凯, 等.页岩气水平井分段压裂优化设计新方法[J].石油钻探技术, 2014, 42(2):1-6. Jiang Tingxue, Bian Xiaobing, Yuan Kai, et al.A new method in staged fracturing design optimization for shale gas horizontal wells[J].Petroleum Drilling Techniques, 2014, 42(2):1-6. [14] 刘红磊, 熊炜, 高应运, 等.方深1井页岩气藏特大型压裂技术[J].石油钻探技术, 2011, 39(3):46-52. Liu Honglei, Xiong Wei, Gao Yingyun, et al.Large scale fracturing technology of Fangshen 1 Shale Gas Well[J].Petroleum drilling techniques, 2011, 39(3):46-52. [15] 周德华, 焦方正, 贾长贵, 等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术, 2014, 42(1):75-80. Zhou Dehua, Jiao Fangzheng, Jia Changgui, et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques, 2014, 42(1):75-80. -
期刊类型引用(9)
1. 冯奇,蒋官澄,张朔,黄胜铭,王全得,王文卓. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用. 钻井液与完井液. 2024(03): 405-413 . 百度学术
2. 刘红磊,周林波,陈作,薄启炜,马玉生. 中国石化页岩气电动压裂技术现状及发展建议. 石油钻探技术. 2023(01): 62-68 . 本站查看
3. 王玉芳,翟刚毅,胡志方,李娟,张云枭,康海霞,张家政. 湖北宜昌震旦系陡山沱组储层特征及复杂体积压裂效果评价. 地质学报. 2022(04): 1447-1459 . 百度学术
4. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 . 百度学术
5. 王玉芳,翟刚毅,王劲铸,张云枭. 四川盆地及周缘龙马溪组页岩产气效果影响因素. 地质力学学报. 2017(04): 540-547 . 百度学术
6. 王玉芳,翟刚毅,包书景,周志,宋腾,李浩涵. 鄂阳页1井陡山沱组页岩储层含气性及可压性评价. 中国矿业. 2017(06): 166-172 . 百度学术
7. 王玉海,包凯,陆俊华,黄树新,郑威. 彭水区块气举排水采气技术研究与应用. 重庆科技学院学报(自然科学版). 2016(03): 78-81 . 百度学术
8. 李红梅. 微地震监测技术在非常规油气藏压裂效果综合评估中的应用. 油气地质与采收率. 2015(03): 129-134 . 百度学术
9. 付继彤. 水平井高压水射流泡沫酸洗工艺应用. 油气地质与采收率. 2015(05): 123-126 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 4146
- HTML全文浏览量: 95
- PDF下载量: 4818
- 被引次数: 9