彭水区块水平井清水连续加砂压裂技术

刘红磊, 韩倩, 李颖, 赖建林, 徐骞

刘红磊, 韩倩, 李颖, 赖建林, 徐骞. 彭水区块水平井清水连续加砂压裂技术[J]. 石油钻探技术, 2015, 43(1): 13-19. DOI: 10.11911/syztjs.201501003
引用本文: 刘红磊, 韩倩, 李颖, 赖建林, 徐骞. 彭水区块水平井清水连续加砂压裂技术[J]. 石油钻探技术, 2015, 43(1): 13-19. DOI: 10.11911/syztjs.201501003
Liu Honglei, Han Qian, Li Ying, Lai Jianlin, Xu Qian. Water Fracturing with Continuous Sand for Horizontal Wells in the Pengshui Block[J]. Petroleum Drilling Techniques, 2015, 43(1): 13-19. DOI: 10.11911/syztjs.201501003
Citation: Liu Honglei, Han Qian, Li Ying, Lai Jianlin, Xu Qian. Water Fracturing with Continuous Sand for Horizontal Wells in the Pengshui Block[J]. Petroleum Drilling Techniques, 2015, 43(1): 13-19. DOI: 10.11911/syztjs.201501003

彭水区块水平井清水连续加砂压裂技术

基金项目: 

中国石油化工股份有限公司石油工程先导试验项目"彭页HF-1页岩气水平井分段压裂技术"(编号:34600297-12-FW0421-029)资助。

详细信息
    作者简介:

    刘红磊(1976-),男,河北景县人,1999年毕业于石油大学(华东)石油工程专业,高级工程师,主要从事低渗透储层改造理论研究与现场技术服务工作。

  • 中图分类号: TE357.1

Water Fracturing with Continuous Sand for Horizontal Wells in the Pengshui Block

  • 摘要: 为了提高常温低压页岩气藏的开采效益,开展了彭水区块水平井清水连续加砂压裂技术应用研究。根据前期邻井同层的压裂数据,进行了彭页4HF井的压力预测和拟合,论证了清水加砂压裂的可行性。计算表明,彭水地区清水加砂时地面施工压力随射孔段深度增加而升高,射孔段深度不超过4 340 m时,施工压力不会超过限压91.0 MPa。彭页4HF井压裂施工过程中,根据压力变化情况实时调整优化压裂方案,逐步降低降阻剂浓度,直至完全停用降阻剂。彭页4HF井后4段全程清水连续加砂压裂,射孔段最深为2 434.0 m,施工压力最高69.2 MPa,压裂加砂符合率105.9%,单井压裂液费用降低约400万元。研究结果表明,清水连续加砂压裂地面施工压力与射孔段深度呈正相关关系,清水连续加砂压裂技术可大幅降低压裂成本。
    Abstract: In order to improve recovery efficiency of normal temperature and low pressure shale gas reservoirs, the applicability of water fracturing technology with continuous sand for horizontal wells in the Pengshui Block was investigated.Base on preliminary fracture data from the same layers in offset wells, pressure prediction and fitting were made for Well Pengye 4HF in order to demonstrate the feasibility of water fracturing with sand.Calculation results showed that the operation pressure increased with the perforation depth in water fracturing in the Pengshui Block and it would not exceed the limit of 91 MPa as long as the perforation depth was no more than 4 340 m.According to the change of operation pressure, fracturing scheme of Well Pengye 4HF was adjusted and optimized in real-time, and tests were conducted to gradually reduce the concentration of resistance reducing agent until it was completely abandoned.In the last four sections of the well, water fracturing with continuous sand was performed, in which the maximum perforating depth was 2 434.0 m, the highest operation pressure was 69.2 MPa.cost fracturing fluid was reduced by about 4 million yuan.The results showed that operation pressure has a positive correlation with the perforation depth when conducting water fracturing with continuous sand.The application of the technology could greatly reduce the cost of fracturing fluid.
  • [1] 陈尚斌, 朱炎铭, 王红岩, 等.中国页岩气研究现状与发展趋势[J].石油学报, 2010, 31(4):689-694. Chen Shangbin, Zhu Yanming, Wang Hongyan, et al.Research status and trends of shale gas in China[J].Acta Petrolei Sinica, 2010, 31(4):689-694.
    [2] 张艺耀, 王世彬, 郭建春.页岩地层压裂工艺新进展[J].断块油气田, 2013, 20(3):278-281. Zhang Yiyao, Wang Shibin, Guo Jianchun.New progress of hydraulic fracturing technology for shale formation[J].Fault-Block Oil Gas Field, 2013, 20(3):278-281.
    [3] 王素兵.清水压裂工艺技术综述[J].天然气勘探与开发, 2005, 28(4):39-42. Wang Subing.Riverfrac treatment[J].Natural Gas Exploration and Development, 2005, 28(4):39-42.
    [4] 才博, 史原鹏, 李拥军, 等.提高清水压裂人工裂缝导流能力新技术研究:以乌兰花凹陷兰5井为例[J].油气井测试, 2013, 22(4):10-12. Cai Bo, Shi Yuanpeng, Li Yongjun, et al.Study on improving water fracturing artificial fracture conductivity:taking Well Lan5 as an example in Wulanhua Depression[J].Well Testing, 2013, 22(4):10-12.
    [5] 蒋廷学, 贾长贵, 王海涛, 等.页岩气网络压裂设计方法研究[J].石油钻探技术, 2011, 39(3):36-40. Jiang Tingxue, Jia Changgui, Wang Haitao, et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques, 2011, 39(3):36-40.
    [6]

    Craig L Cipolla.Modeling production and evaluating fracture performance in unconventional gas reservoirs[R].SPE 118536, 2009.

    [7] 吴顺林, 李宪文, 张矿生, 等.一种实现裂缝高导流能力的脉冲加砂压裂新方法[J].断块油气田, 2014, 21(1):110-113. Wu Shunlin, Li Xianwen, Zhang Kuangsheng, et al.A new method of pulse sand fracturing to achieve high conductivity of fracture[J].Fault-Block Oil Gas Field, 2014, 21(1):110-113.
    [8] 李庆辉, 陈勉, Wang Fred P, 等.工程因素对页岩气产量的影响:以北美Haynesville页岩气藏为例[J].天然气工业, 2012, 32(4):1-6. Li Qinghui, Chen Mian, Wang Fred P, et al.Influences of engineering factors on shale gas productivity: a case study from the Haynesville shale gas reservoir in North America[J].Natural Gas Industry, 2012, 32(4):1-6.
    [9] 李达, 贾建鹏, 滕飞启, 等.压裂施工过程中的井底压力计算[J].断块油气田, 2013, 20(3): 384-387. Li Da, Jia Jianpeng, Teng Feiqi, et al.Calculation of bottomhole pressure during fracturing[J].Fault-Block Oil Gas Field, 2013, 20(3):384-387.
    [10] 赵金洲, 王松, 李勇明.页岩气藏压裂改造难点与技术关键[J].天然气工业, 2012, 32(4):46-49. Zhao Jinzhou, Wang Song, Li Yongming.Difficulties and techniques in the fracturing treatment of shale gas reservoirs[J].Natural Gas Industry, 2012, 32(4):46-49.
    [11] 周成香, 周玉仓, 李双明, 等.川东南页岩气井压裂降压技术[J].石油钻探技术, 2014, 12(4):42-47. Zhou Chengxiang, Zhou Yucang, Li Shuangming, et al.Fracturing pressure reducing technique for shale gas well in the Southeastern Sichuan[J].Petroleum Drilling Techniques, 2014, 42(4):42-47.
    [12] 贾长贵, 路保平, 蒋廷学, 等.DY2HF深层页岩气水平井分段压裂技术[J].石油钻探技术, 2014, 42(2):85-90. Jia Changgui, Lu Baoping, Jiang Tingxue, et al.Multi-stage horizontal well fracturing technology in deep shale gas Well DY2HF[J].Petroleum Drilling Techniques, 2014, 42(2):85-90.
    [13] 蒋廷学, 卞晓冰, 袁凯, 等.页岩气水平井分段压裂优化设计新方法[J].石油钻探技术, 2014, 42(2):1-6. Jiang Tingxue, Bian Xiaobing, Yuan Kai, et al.A new method in staged fracturing design optimization for shale gas horizontal wells[J].Petroleum Drilling Techniques, 2014, 42(2):1-6.
    [14] 刘红磊, 熊炜, 高应运, 等.方深1井页岩气藏特大型压裂技术[J].石油钻探技术, 2011, 39(3):46-52. Liu Honglei, Xiong Wei, Gao Yingyun, et al.Large scale fracturing technology of Fangshen 1 Shale Gas Well[J].Petroleum drilling techniques, 2011, 39(3):46-52.
    [15] 周德华, 焦方正, 贾长贵, 等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术, 2014, 42(1):75-80. Zhou Dehua, Jiao Fangzheng, Jia Changgui, et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques, 2014, 42(1):75-80.
  • 期刊类型引用(35)

    1. 付海峰,刘鹏林,陈祝兴,翁定为,马泽元,李军. 基于避免断层激活机制的组合压裂模式研究. 石油机械. 2024(01): 88-97 . 百度学术
    2. 刘豪,刘怀亮,刘宇,曹伟,连威,李军. 页岩气多级压裂断层动态滑移规律研究. 石油机械. 2024(02): 65-74 . 百度学术
    3. 刘怀亮,樊子潇,刘宇,连威,席岩,张小军. 基于震源机制的断层滑移量计算方法. 世界石油工业. 2024(05): 40-47 . 百度学术
    4. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 . 百度学术
    5. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 . 百度学术
    6. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 . 百度学术
    7. 文山师,尹陈,石学文,张洞君,韩福盛,熊财富. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征. 地球物理学进展. 2023(05): 2172-2181 . 百度学术
    8. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看
    9. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 . 百度学术
    10. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 . 百度学术
    11. 张旭,张哲平,杨尚谕,王雪刚,宋琳. 基于特征值和弧长法计算套管抗挤强度. 钻采工艺. 2022(01): 35-40 . 百度学术
    12. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 . 百度学术
    13. 吴建忠,乔智国,慈建发,何龙,连威,李军. 基于震源机制的套管变形量控制方法研究. 石油管材与仪器. 2022(03): 24-31 . 百度学术
    14. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 . 百度学术
    15. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 . 百度学术
    16. 陈朝伟,黄锐,曾波,宋毅,周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析. 石油钻探技术. 2021(01): 93-100 . 本站查看
    17. 李军,赵超杰,柳贡慧,张辉,张鑫,任凯. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版). 2021(02): 63-70 . 百度学术
    18. 张平,何昀宾,刘子平,童亨茂,邓才,任晓海,张宏祥,李彦超,屈玲,付强,王向阳. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业. 2021(05): 84-91 . 百度学术
    19. 李晓蓉,古臣旺,冯永存,丁泽晨. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究. 石油科学通报. 2021(02): 245-261 . 百度学术
    20. 张鑫,李军,刘鹏林,郭雪利,韩葛伟. 断层滑移条件下页岩气井套管变形影响因素分析. 科学技术与工程. 2021(16): 6651-6656 . 百度学术
    21. 陈朝伟,张浩哲,周小金,曹虎. 四川长宁页岩气套管变形井微地震特征分析. 石油地球物理勘探. 2021(06): 1286-1292+1198 . 百度学术
    22. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 . 百度学术
    23. 林志伟,钟守明,宋琳,王雪刚,林铁军,于浩,史涛. 体积压裂改造非对称性对套管损坏影响机理. 特种油气藏. 2021(06): 158-164 . 百度学术
    24. 陈朝伟,房超,朱勇,项德贵. 四川页岩气井套管变形特征及受力模式. 石油机械. 2020(02): 126-134 . 百度学术
    25. 连威,李军,柳贡慧,席岩,韩葛伟. 水力压裂过程中页岩强度折减对套管变形的影响分析. 石油管材与仪器. 2020(04): 46-50 . 百度学术
    26. 蒋振源,陈朝伟,张平,张丰收. 断块滑动引起的套管变形及影响因素分析. 石油管材与仪器. 2020(04): 30-37 . 百度学术
    27. 范宇,黄锐,曾波,陈朝伟,周小金,项德贵,宋毅. 四川页岩气水力压裂诱发断层滑动和套管变形风险评估. 石油科学通报. 2020(03): 366-375 . 百度学术
    28. 陈朝伟,曹虎,周小金,苟其勇,张浩哲. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性. 天然气勘探与开发. 2020(04): 123-130 . 百度学术
    29. 席岩,李军,柳贡慧,曾义金,李剑平. 页岩气水平井多级压裂过程中套管变形研究综述. 特种油气藏. 2019(01): 1-6 . 百度学术
    30. 乔磊,田中兰,曾波,杨恒林,付盼,杨松. 页岩气水平井多因素耦合套变分析. 断块油气田. 2019(01): 107-110 . 百度学术
    31. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 . 百度学术
    32. 罗庆,黄华,徐菲,张立. 新型组合井况监测仪在普光高含硫气井的应用. 断块油气田. 2019(02): 240-243 . 百度学术
    33. 陈朝伟,项德贵,张丰收,安孟可,尹子睿,蒋振源. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略. 石油科学通报. 2019(04): 364-377 . 百度学术
    34. 周波,毛蕴才,查永进,汪海阁. 体积压裂水锤效应对页岩气井屏障完整性影响及对策. 石油钻采工艺. 2019(05): 608-613 . 百度学术
    35. 郭雪利,李军,柳贡慧,陈朝伟,任凯,来东风. 基于震源机制的页岩气压裂井套管变形机理. 断块油气田. 2018(05): 665-669 . 百度学术

    其他类型引用(32)

计量
  • 文章访问数:  4146
  • HTML全文浏览量:  95
  • PDF下载量:  4818
  • 被引次数: 67
出版历程
  • 收稿日期:  2014-05-25
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回