考虑非牛顿流体螺旋流动的钻井井筒温度场研究

李梦博, 柳贡慧, 李军, 魏晓强, 高海军

李梦博, 柳贡慧, 李军, 魏晓强, 高海军. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
引用本文: 李梦博, 柳贡慧, 李军, 魏晓强, 高海军. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
Citation: Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013

考虑非牛顿流体螺旋流动的钻井井筒温度场研究

基金项目: 

国家重点基础研究发展计划("973"计划)项目"深井复杂地层安全高效钻井基础研究"(编号:2010CB226700)、国家自然基金重点项目"控压钻井测控理论及关键问题研究"(编号:51334003)、国家自然科学基金面上项目"控压钻井井筒多相流体瞬态变质量流动理论及工况解释方法研究"(编号:51274045)和国家自然科学基金面上项目"深层碳酸盐岩地层与井筒耦合作用机理与压力自动控制方法研究"(编号:51274221)联合资助。

详细信息
    作者简介:

    李梦博(1987—),男,河北青县人,2009年毕业于中国石油大学(北京)石油工程专业,在读博士研究生,主要从事控压钻井与井控方面的研究工作。

  • 中图分类号: TE21

Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation

  • 摘要: 准确了解钻井过程中井筒温度及其变化规律对于安全、高效钻井具有重要的意义。根据热力学第一定律及传热理论,建立了完整的钻井循环过程中温度场数学模型,分析了井筒中非牛顿流体螺旋流动的传热机理以及水力学能量和机械能量对井筒温度场的影响规律,对高温高压循环当量密度计算和井筒温度控制方法进行了初步探讨。模型计算结果与现场试验数据吻合较好。由数值模拟结果得出:在井深2 000.00 m处,钻柱转速从0 r/min升至200 r/min时该处温度升高4.5 ℃;在井深5 000.00 m处,钻柱转速从0 r/min升至200 r/min时该处温度升高7.8 ℃。研究结果表明,井底温度随钻柱转速的增加呈指数增长,随着井深的增加,钻柱旋转对井底温度的影响更加明显。建立的温度场模型可为高温高压地层钻井水力学设计和现场作业过程中的温度控制提供理论参考。
    Abstract: Understanding wellbore temperature and its changing regularity is very critical for drilling safely and efficiently.According to the first law of thermodynamics and heat transfer theory,a complete temperature field mathematical model for drilling circulation was established.The heat transfer mechanism in spiral flow of non-Newtonian fluid in wellbore and the effect of hydraulic energy and mechanical energy on wellbore temperature field were analyzed.A preliminary discussion was conducted regarding calculation of ECD under high temperature and high pressure and control over wellbore temperature.The model results matched well with field experimental data.Numerical simulation indicated bottomhole temperature increased by 4.5 ℃ at the depth of 2 000 m,and 7.8 ℃ at 5 000 m respectively when the rotary speed of drillstring rose from 0 r/min to 200 r/min.The bottomhole temperature increased exponentially with the increase of rotary speed,the drill string rotary speed had much higher effects on bottomhole temperature with the increase of well depth.This model can provide a theoretical reference for hydraulic design of drilling in HTHP formation and temperature control during field operations.
  • [1]

    Holmes C S,Swift S C.Calculation of circulating mud temperature[J].Journal of Petroleum Technology,1970,22(6):670-674.

    [2]

    Kabir C S,Hasan A R,Kouba G E,et al.Determining circulating fluid temperature in drilling,workover and well control operations[J].SPE Drilling Completion,1992,11(2):74-79.

    [3] 何世明,何平,尹成,等.井下循环温度模型及其敏感性分析[J].西南石油学院学报,2002,24(1):57-60. He Shiming,He Ping,Yin Cheng,et al.A wellbore temperature model it’s parametric sensitivity analysis[J].Journal of Southwest Petroleum Institute,2002,24(1):57-60.
    [4] 易灿,闫振来,郭磊.井下循环温度及其影响因素的数值模拟研究[J].石油钻探技术,2007,35(6):47-49. Yi Can,Yan Zhenlai,Guo Lei.Numerical simulation of circulating temperature and it’s impacting parameters[J].Petroleum Drilling Techniques,2007,35(6):47-49.
    [5] 窦亮彬,李根生,沈忠厚,等.注CO2井筒温度压力预测模型及影响因素研究[J].石油钻探技术,2013,41(1):76-81. Dou Liangbin,Li Gensheng,Shen Zhonghou,et al.Wellbore pressure and temperature prediction model and its affecting factors for CO2 injection wells[J].Petroleum Drilling Techniques,2013,41(1):76-81.
    [6]

    Thompson M,Burgess T M.The prediction of interpretation of mud temperature while drilling[R].SPE 14180,1985.

    [7]

    Osisanya S O,Harris O O.Evaluation of equivalent circulating density of drilling fluids under high-pressure/high-temperature conditions[R].SPE 97018,2005.

    [8]

    Gonzalez M E,Bloys J B,Lofton J E,et al.Increasing effective fracture gradients by managing wellbore temperatures[R].IADC/SPE 87217,2004.

    [9]

    Iyoho A W,Rask J H,Wieseneck J B,et al.Comprehensive drilling model analyzes BHT parameters[R].SPE 124142,2009.

    [10] 高德利.油气井管柱力学与工程[M].东营:中国石油大学出版社,2006:88-89. Gao Deli.Mechanics and engineering string of oil and gas wells[M].Dongying:China University of Petroleum Press,2006:88-89.
    [11]

    Ahmed R M,Enfis M S,Kheir H M E,et al.The effect of drillstring rotation on equivalent circulation density:modeling and analysis of field measurements[R].SPE 135587,2010.

    [12]

    Fénot M,Bertin Y,Dorignac E,et al.A review of heat transfer between concentric rotating cylinders with or without axial flow[J].International Journal of Thermal Sciences,2011,50(7):1138-1155.

    [13] 崔海清,刘希圣.非牛顿流体偏心环形空间螺旋流的速度分布[J].石油学报,1996,17(2):76-83. Cui Haiqing,Liu Xisheng.Velocity distribution of helical flow of non-Newtonian fluid in eccentric annuli[J].Acta Petrolei Sinica,1996,17(2):76-83.
    [14]

    Gazley C.Heat transfer characteristics of the rotational and axial flow between concentric cylinders[J].Journal of Heat Transfer,1958,80(1):79-90.

    [15]

    Marshall D W,Bentsen R G.A computer model to determine the temperature distributions in a wellbore[J].Journal of Canadian Petroleum Technology,1982,21(1):63-75.

    [16] 陶文铨.数值传热学[M].西安:西安交通大学出版社,1988:85. Tao Wenquan.Numerical heat transfer[M].Xi’an:Xi’an Jiaotong University Press,1988:85.
    [17] 张涛,柳贡慧,李军,等.随钻压力测量系统的研制与现场试验[J].石油钻采工艺,2012,34(2):20-22. Zhang Tao,Liu Gonghui,Li Jun,et al.Pressure while drilling system development and field test[J].Oil Drilling Production Technology,2012,34(2):20-22.
    [18] 罗宇维,朱江林,李东,等.温度和压力对井内流体密度的影响[J].石油钻探技术,2012,40(2):30-34. Luo Yuwei,Zhu Jianglin,Li Dong,et al.The impact of temperature pressure on borehole fluids density[J].Petroleum Drilling Techniques,2012,40(2):30-34.
  • 期刊类型引用(18)

    1. 刘涛,何淼,张亚,陈鑫,阚正玉,王世鸣. 小井眼超深井井筒温度预测模型及降温方法研究. 钻采工艺. 2024(03): 65-72 . 百度学术
    2. 张政,赵豫,王国荣,钟林,王敬朋. 地热井钻井过程中漏失对井筒温度分布的影响. 科学技术与工程. 2024(23): 9819-9826 . 百度学术
    3. 欧彪,董波,严焱诚,江波,肖东. 深层碳酸盐岩地层长水平段钻井井筒温度分布模型研究. 科学技术与工程. 2023(03): 1008-1016 . 百度学术
    4. 王庆,张佳伟,孙铭浩,纪国栋,汪海阁,孙晓峰. 大庆油田古龙页岩岩屑在幂律流体中的沉降阻力系数研究. 石油钻探技术. 2023(02): 54-60 . 本站查看
    5. 柳鹤,于国伟,于琛,郑锋,陈文博,王超,郑双进. 基于地面降温的井下钻井液冷却技术. 钻井液与完井液. 2023(06): 756-764 . 百度学术
    6. 张锐尧,李军,柳贡慧,杨宏伟,王江帅,文涛. 双梯度钻井关键工具及井筒压力动态变化规律. 石油机械. 2022(01): 1-9 . 百度学术
    7. 刘奕杉,黄顺潇,袁光杰,唐洋. 煤炭地下气化高温井筒温度场研究. 煤炭转化. 2022(01): 58-64 . 百度学术
    8. 张锐尧,李军,柳贡慧. 深水变梯度钻井井筒压力预测模型的研究. 石油科学通报. 2022(04): 564-575 . 百度学术
    9. 张锐尧,蒋振新,李军,郭勇,柳贡慧. 多梯度钻井分离器冲蚀磨损分析及流场研究. 石油机械. 2021(01): 80-87 . 百度学术
    10. 余意,王雪瑞,柯珂,王迪,于鑫,高永海. 极地钻井井筒温度压力预测模型及分布规律研究. 石油钻探技术. 2021(03): 11-20 . 本站查看
    11. 张锐尧,李军,柳贡慧,杨宏伟. 深水钻井多压力系统条件下的井筒温度场研究. 石油机械. 2021(07): 77-85 . 百度学术
    12. 张锐尧,李军,柳贡慧,杨宏伟,王江帅,高热雨. 基于空心球滑移条件下的双梯度钻井井筒温压场的研究. 石油科学通报. 2021(03): 429-440 . 百度学术
    13. 张锐尧,李军,柳贡慧,王鹏. 深水多梯度钻井空心球分离规律及其对井筒传热与传质的影响. 钻采工艺. 2021(05): 16-21 . 百度学术
    14. 杨宏伟,李军,柳贡慧,高旭,王江帅,骆奎栋. 深水多梯度钻井井筒温度场. 中国石油大学学报(自然科学版). 2020(05): 62-69 . 百度学术
    15. 朱广海,刘章聪,熊旭东,宋洵成,王军恒,翁博. 电加热稠油热采井筒温度场数值计算方法. 石油钻探技术. 2019(05): 110-115 . 本站查看
    16. 刘文成,赵丹汇,赵琥,郭朝红,姜玉雁,李志刚. 考虑钻具磨损内热源的深水钻井循环温度场研究. 中国海上油气. 2018(01): 136-141 . 百度学术
    17. 李梦博,许亮斌,罗洪斌,耿亚楠,李根生. 深水高温钻井井筒循环温度分布与控制方法研究. 中国海上油气. 2018(04): 158-162 . 百度学术
    18. 何淼,柳贡慧,李军,李梦博,查春青,李根. 多相流全瞬态温度压力场耦合模型求解及分析. 石油钻探技术. 2015(02): 25-32 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  3206
  • HTML全文浏览量:  70
  • PDF下载量:  3681
  • 被引次数: 26
出版历程
  • 收稿日期:  2013-12-11
  • 修回日期:  2014-05-14
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回