A New Method for Evaluating Shale Fracability Index and Its Application
-
摘要: 脆性指数是评价页岩可压性的基础,国外的脆性指数研究只局限于近井筒参数。为了更全面地表征页岩的可压性,以压裂施工参数为基础,从能量的角度提出了一种新的页岩脆性指数综合评价方法,并建立了地质参数与工程参数有机结合的可压性指数综合模型;同时应用归一化方法,建立了利用等效支撑剂量与等效压裂液量的比值表征可压性指数的新模型。实例计算表明,采用该方法计算的脆性指数及可压性指数与压后产气效果关联度较强,能够准确反映裂缝的延伸性,其值大小可作为优选压裂段簇位置的依据,并具有较高的可信度和现场实用性。建议在现场推广应用,以促进国内页岩气的勘探开发效果及水平。Abstract: Brittleness evaluation is the basis for shale fracability evaluation,and the brittleness index research has been limited to near-wellbore zone in foreign studies.In order to fully describe the shale fracability,a new integrated method of shale brittleness index evaluation was proposed in view of energy based on fracturing parameters.A comprehensive model of shale fracability index was established taking into account both geology and engineering parameters.Moreover,the normalization method was adopted to establish a new model of shale fracability index which was evaluated by the ratio of equivalent proppant volume to equivalent fracturing fluid volume.Field application showed that the calculated shale brittleness index is highly correlated to fracability index and post-frac gas production,and may be used to determine the preferred fraturing position for each stage;the new method is reliable and practicable.It can be recommended for promoting shale gas exploration and development in China.
-
Keywords:
- shale /
- brittleness index /
- fracability index /
- evaluation method
-
-
[1] Evans R J,Klein J D,Walls J D,et al.Part Iii:the mechanics of electrical resistivity measurement on rock samples;SCA guidelines for sample preparation and porosity measurement of electrical resistivity samples[J].The Log Analyst,1990,31(2):64-67.
[2] Ingram J D.Research in ’90s[R].SEG 1992-1396,1992.
[3] Jarvie D.Finding bypassed or overlooked pay zones using geochemistry techniques[R].IPTC 12918,2008.
[4] Wang F P,Reed R M.Pore networks and fluid flow in gas shales[R].SPE 124253,2009.
[5] Rickman R,Mullen M,Petre E,et al.A practical use of shale petrophysics for stimulation design optimization:all shale playsare not clones of the Barnett Shale[R].SPE 115258,2008.
[6] 杨建,付永强,陈鸿飞,等.页岩储层的岩石力学特征[J].天然气工业,2012,32(7):12-14. Yang Jian,Fu Yongqiang,Chen Hongfei,et al.Rock mechanical characteristics of shale reservoirs[J].Natural Gas Industry,2012,32(7):12-14. [7] 张艺耀,王世彬,郭建春.页岩地层压裂工艺新进展[J].断块油气田,2013,20(3):278-281. Zhang Yiyao,Wang Shibin,Guo Jianchun.New progress of hydraulic fracturing technology for shale formation[J].Fault- Block Oil Gas Field,2013,20(3):278-281. [8] 李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1680-1685. Li Qinghui,Chen Mian,Jin Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680-1685. [9] Heteny M.Handbook of experimental stress analysis[M].New York:John Wiley,1966:23-25.
[10] Lawn B R,Marshall D B.Hardness,toughness and brittleness:an indentation analysis[J].Journal of American Ceramic Society,1979,62(7):347-350.
[11] Jesse V H.Glossary of geology and related sciences[M].Washington: American Geological Institute,1960:99-102.
[12] Quinn J B,Quinn G D.Indentation brittleness of ceramics: a fresh approach[J].Journal of Materials Science,1997,32(16):4331-4346.
[13] Griggs David,Handin John.Rock deformation: a symposium[M].New York:Waverly Press,1960:66-67.
[14] Bishop A W.Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference,Olso:[s.n.],1967:142-150.
[15] 赵海峰,陈勉,金衍.页岩气藏网状裂缝系统的演示断裂动力学[J].石油勘探与开发,2012,39(4):464-470. Zhao Haifeng,Chen Mian,Jin Yan.Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J].Petroleum Exploration and Development, 2012,39(4):464-470. [16] 尹虎,王新海,张芳,等.吸附气对气水两相流页岩气井井底压力的影响[J].断块油气田,2013,20(1):74-76. Yin Hu,Wang Xinhai,Zhang Fang,et al.Influence of adsorbed gas on bottomhole pressure of shale gas wells with gas-water two-phase flow[J].Fault-Block Oil Gas Field,2013,20(1):74-76. -
期刊类型引用(8)
1. 王国辉,苏乐,赵燕博. 强封堵防塌型水基钻井液体系室内制备及其应用. 当代化工. 2024(05): 1162-1165+1169 . 百度学术
2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
3. 田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 . 百度学术
4. 芦文成. 油页岩地层钻井液关键技术研究. 冶金管理. 2023(07): 53-55 . 百度学术
5. 王媛媛,谢鑫,窦正道,赵进,付成林,徐浩,张骥. 小井眼高性能水基钻井液的研制和应用. 精细石油化工进展. 2023(04): 15-20 . 百度学术
6. 尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 . 百度学术
7. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 . 百度学术
8. 韩银府,周书胜,魏世旺. 一种环保型封堵剂的制备及其性能评价. 辽宁化工. 2023(12): 1756-1758+1763 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 4522
- HTML全文浏览量: 190
- PDF下载量: 3777
- 被引次数: 9