YUAN Dengyu. Experimental study of CO2 huff and puff combined with N2 foam for enhanced oil recovery by three-dimensional physical models [J]. Petroleum Drilling Techniques,2022, 50(6):126-132. DOI: 10.11911/syztjs.2022105
Citation: YUAN Dengyu. Experimental study of CO2 huff and puff combined with N2 foam for enhanced oil recovery by three-dimensional physical models [J]. Petroleum Drilling Techniques,2022, 50(6):126-132. DOI: 10.11911/syztjs.2022105

Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models

  • The oil increment of a heavy oil reservoir in North China decreases gradually year by year after multiple CO2 huff and puff operations. In order to improve the developmental effect, CO2 huff and puff combined with N2 foam was proposed to enhance the oil recovery. Evaluation experiments on dynamic and static performances of foam systems were conducted to clarify the mechanism of CO2 huff and puff combined with N2 foam in enhancing oil recovery and assess the plugging performance of N2 foam systems. Then, a self-designed three-dimensional heterogeneous physical model was used to carry out laboratory physical simulation experiments on CO2 huff and puff combined with N2 foam, with the effect of which on improving oil recovery and related mechanisms studied. Experimental results showed that a stable foam system could be formed by using α-olefin sulfonate (AOS) and polyacrylamide (HPAM) both with a mass fraction of 0.3%, and the plugging ratio could reach 99.57%, which thus effectively plugged high permeable layers. The results of three-dimensional experiments showed that CO2 huff and puff combined with N2 foam could improve the oil recovery by 22.74 percentage points, and the water cut could be reduced to as low as 2.07% during huff and puff operations, with its effective action period lasting 2.5–3.0 times that of pure CO2 huff and puff. The CO2 huff and puff combined with N2 foam can effectively enlarge the swept volumes of CO2 and subsequent water, which provides theoretical support for its future field applications.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return