JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119
Citation: JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119

Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology

  • In view of the large water consumption in conventional hydraulic fracturing, the rare implementation for waterless fracturing to reach high sand liquid ratio, and the difficulty in forming complex fractures with foam fracturing, the concept of a less-water hydraulic fracturing technology was proposed. Making full use of the technical advantages of hydraulic fracturing, waterless fracturing and foam fracturing, less-water hydraulic fracturing can reduce the water consumption to the maximum on the basis of satisfying the fracture volume. This paper mainly introduces the key technologies of less-water hydraulic fracturing including the composite rock breaking technology of supercritical carbon dioxide and low-viscosity slick water, balanced extension control technology for multi-cluster fractures based on multiple factors, sand adding technology during the fracture creating and sand carrying process, and flowback and production life-circle management technology, etc. According to these technologies, key methods of less-water hydraulic fracturing were proposed, such as remarkable enhancement of the fracturing fluids’ facture creating efficiency, maximal improvement of the sand liquid ratio in the multi-scale hydraulic fractures and the application of micro-foam fracturing fluid, etc. The proposal of less-water hydraulic fracturing technology has strong theoretical value and significance in idea change of fracturing and development effect enhancement in China.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return