姚军,王春起,黄朝琴,等. 深层超深层油气藏高应力下数字岩心构建方法[J]. 石油钻探技术,2024, 52(2):1-10. DOI: 10.11911/syztjs.2024039
引用本文: 姚军,王春起,黄朝琴,等. 深层超深层油气藏高应力下数字岩心构建方法[J]. 石油钻探技术,2024, 52(2):1-10. DOI: 10.11911/syztjs.2024039
YAO Jun, WANG Chunqi, HUANG Zhaoqin, et al. Digital rock construction method considering effects of high stress in deep and ultra-deep reservoirs[J]. Petroleum Drilling Techniques,2024, 52(2):1-10. DOI: 10.11911/syztjs.2024039
Citation: YAO Jun, WANG Chunqi, HUANG Zhaoqin, et al. Digital rock construction method considering effects of high stress in deep and ultra-deep reservoirs[J]. Petroleum Drilling Techniques,2024, 52(2):1-10. DOI: 10.11911/syztjs.2024039

深层超深层油气藏高应力下数字岩心构建方法

Digital rock construction method considering effects of high stress in deep and ultra-deep reservoirs

  • 摘要: 深层超深层油气藏由于埋藏深,其地应力达200 MPa,会显著改变储层岩石孔隙的微观结构。数字岩心是孔隙尺度数值模拟的重要载体,但是现有数字岩心重构方法是基于常温常压下岩心的扫描图像重构,不能反映高应力下的孔隙结构。为此,提出了一种基于离散元法考虑高应力影响的数字岩心重构方法。首先,采用分水岭算法分割CT图像,利用球面谐波分析方法建立轮廓数据库,并在PFC3D中建立Clump(团簇)模板库;然后,根据孔隙度和粒径分布使用模板库中的Clump建立离散元模型,并用两点相关和线性路径相关函数曲线评价模型的准确性;随后,标定颗粒间微观力学参数,并加载应力模拟得到不同应力下的数字岩心;最后,分析不同应力下数字岩心的孔隙几何拓扑结构,计算孔隙度和渗透率。以Bentheim砂岩为例,构建了其不同应力下的数字岩心,研究结果表明,应力增大,导致孔隙和喉道半径缩小、喉道伸长、连通性变差、孔隙度和渗透率减小。研究结果为深层超深层油气藏孔隙尺度模拟提供了技术途径。

     

    Abstract: Due to the depth of deep and ultra-deep reservoirs and the ground stress reaching 200 MPa, the pore microstructure of reservoir rock will be significantly changed. However, the existing digital rock reconstruction method is based on the scanning image reconstruction at normal temperature and pressure, and cannot reflect the pore structure under high pressure conditions. Therefore, a digital rock reconstruction method based on discrete element method (DEM) is proposed to consider the effect of high stress. The first step is to convert the digital rock image at normal temperature and pressure into a discrete element model, establish the contour database by using the spherical harmonic analysis method, and establish the Clump template library in PFC3D. According to the porosity and particle size distribution, Clump in the template library was used to build a discrete element model, and the accuracy of the model was evaluated by calculating the two-point correlation and linear path correlation function curves. The second step is to calibrate the micromechanical parameters between particles according to the results of conventional triaxial compression test, and set different true triaxial stresses to obtain the digital rock under different stresses. The third step is to analyze the pore geometry topology of digital rock under different stresses and calculate the porosity permeability. Taking Bentheim sandstone as an example, a digital core under different stresses is constructed. High stress leads to the reduction of pore and throat radius, the growth of throat, the poor connectivity, and the decrease of porosity and permeability. The results provide theoretical guidance for the pore scale simulation of deep ultra-deep oil and gas reservoirs.

     

/

返回文章
返回