页岩储层压裂物理模拟技术进展及发展趋势

侯冰, 张其星, 陈勉

侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096
引用本文: 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096
HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096
Citation: HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096

页岩储层压裂物理模拟技术进展及发展趋势

基金项目: 国家重点研究与发展计划–中美政府间国际合作项目“深部含煤岩系超临界CO2穿层压裂–驱替–封存评价技术研究”(编号:2022YFE0129800)、中国石油天然气集团有限公司–中国石油大学(北京)战略合作科技专项“鄂尔多斯盆地致密油–页岩油富集、高效开发理论与关键技术研究”(编号:ZLZX2020-02)联合资助
详细信息
    作者简介:

    侯冰(1979—),男,辽宁北镇人, 2002年毕业于辽宁石油化工大学油气储运工程专业,2009年获中国石油大学(北京)油气井工程专业博士学位,教授,博士生导师,主要从事石油工程岩石力学相关研究。E-mail:binghou@vip.163.com

  • 中图分类号: TE357

Status and Tendency of Physical Simulation Technology for Hydraulic Fracturing of Shale Reservoirs

  • 摘要:

    传统压裂物理模拟难以仿真深部储层高温高压、复杂地应力和工况环境,在模拟分段细分射孔工艺和实时监测裂缝扩展路径等方面存在一定挑战。系统调研了真三轴压裂物理模拟试验的试样制备、压裂井型和射孔组合、装置原理、相似准则和裂缝监测方式等,探究变排量、交替注液作用模式,穿层压裂缝高延伸机制,缝群压裂竞争扩展和暂堵转向模式;研究厘清了变排量和交替注液在提升缝网改造规模上的差异性,归纳了层状页岩储层水力裂缝缝高穿层主控因素排序,揭示了密切割多段多簇施工模式下裂缝群竞争扩展下的非平面、非对称和非均衡等扩展特征,总结了暂堵后裂缝转向扩展形态,指出“井工厂”立体压裂物理模拟、智能化和数字化为未来研究趋势。采取调整压裂时机、改变射孔参数和优化压裂液性能等措施可以有效控制裂缝扩展路径,能大幅度开启多尺度弱面,增大页岩储层压裂造缝规模。研究结果对深层和超深层页岩储层优化压裂施工参数、提升压裂改造效果具有一定的借鉴作用。

    Abstract:

    Traditional hydraulic fracturing physical simulations face challenges such as simulating high temperature and high pressure, complex in-situ stress and working conditions, staged and subdivided perforation technologies, and real-time monitoring of fracture propagation. The sample preparation, well type and perforation combinations, device principles, similarity criteria, and fracture monitoring methods in true triaxial fracturing physical simulation experiment were systematically investigated. The variable displacement, alternating fluid injection modes, vertical fracture propagation mechanisms, competitive propagation among fracture groups, and fracture turning modes after temporary plugging were explored. The differences between variable displacement and alternating fluid injection in improving the scale of fracture network stimulation were clarified, and the ranking of the main controlling factors for hydraulic fractures and vertical fracture propagation in layered shale reservoirs was summarized. The non-planar, asymmetric, and unbalanced propagation characteristics of fracture groups in competitive propagation under dense cutting and multistage/multi-cluster fracturing were revealed, and the fracture propagation pattern after temporary plugging was summarized. Three-dimensional fracturing physical simulation, intelligence, and digitization of well plants were pointed out as future research trends. Adjusting the fracturing timing, modifying perforation parameters, and optimizing fracturing fluid properties could effectively control fracture propagation, significantly open multi-scale weak surfaces, and increase stimulation scale for shale reservoirs. This overview can serve as a reference for optimizing fracturing operation parameters and improving the effectiveness of fracturing stimulation for deep and ultra-deep shale reservoirs.

  • 图  1   直井、定向井垫斜和露头包裹示意

    Figure  1.   Vertical well, underlay for directional well, and packaged outcrop samples

    图  2   全直径包裹岩心水平井、垂直井和定向井示意

    Figure  2.   Full-diameter wrapped core for horizontal, vertical, and directional wells

    图  3   叠置地层水平井和直井压裂试样示意

    Figure  3.   Fracturing samples for horizontal and vertical wells in superimposed formations

    图  4   真三轴压裂物理模拟各类井筒示意

    Figure  4.   Various wellbores for physical simulation of true triaxial fracturing

    图  5   真三轴压裂系统示意

    Figure  5.   True triaxial fracturing system

    图  6   固化后的低熔点合金及重构的裂缝形态

    Figure  6.   Low melting point alloy and reconfigured fracture shapes after solidification

    图  7   标准岩心、全直径井下岩心和海相页岩试样压裂后CT扫描结果

    Figure  7.   CT scans of standard cores, full-diameter downhole cores, and marine shale samples after fracturing

    图  8   传感光纤在压裂整个时域的应变瀑布图和页岩露头压后裂缝形态

    Figure  8.   Strain waterfall diagram of sensing optical fiber in the entire fracturing time domain and fracture morphology of shale outcrop after fracturing

  • [1] 胡素云,赵文智,侯连华,等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发,2020,47(4):819–828. doi: 10.11698/PED.2020.04.19

    HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819–828. doi: 10.11698/PED.2020.04.19

    [2] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241. doi: 10.3969/j.issn.2096-1693.2019.03.021

    ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241. doi: 10.3969/j.issn.2096-1693.2019.03.021

    [3]

    ZHANG Qixing, HOU Bing, LIN Botao, et al. Integration of discrete fracture reconstruction and dual porosity/dual permeability models for gas production analysis in a deformable fractured shale reservoir[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104028. doi: 10.1016/j.jngse.2021.104028

    [4] 尹光志,李铭辉,许江,等. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报,2015,34(12):2436–2445.

    YIN Guangzhi, LI Minghui, XU Jiang, et al. A new multi-functional true triaxial fluid-solid coupling experiment system and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2436–2445.

    [5] 黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发,1981,8(5):62–74.

    HUANG Rongzun. Initiation and propagation of hydraulic fracturing fractures[J]. Petroleum Exploration and Development, 1981, 8(5): 62–74.

    [6] 蒋海,肖阳,王栋,等. 页岩气体积改造人工缝网优化设计[J]. 特种油气藏,2022,29(5):154–160. doi: 10.3969/j.issn.1006-6535.2022.05.022

    JIANG Hai, XIAO Yang, WANG Dong, et al. Optimal design of artificial fracture network for shale gas volume stimulation[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 154–160. doi: 10.3969/j.issn.1006-6535.2022.05.022

    [7] 谢紫霄,黄中伟,熊建华,等. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(4):63–72. doi: 10.3787/j.issn.1000-0976.2022.04.006

    XIE Zixiao, HUANG Zhongwei, XIONG Jianhua, et al. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 63–72. doi: 10.3787/j.issn.1000-0976.2022.04.006

    [8] 侯冰,陈勉,刁策,等. 砂泥交互储层定向井压裂裂缝穿层扩展真三轴实验研究[J]. 科学技术与工程,2015,15(26):54–59.

    HOU Bing, CHEN Mian, DIAO Ce, et al. True triaxial experimental study of hydraulic fracture penetrating sand and mud interbedding in deviated wellbore science[J]. Science Technology and Engineering, 2015, 15(26): 54–59.

    [9] 侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407–414.

    HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407–414.

    [10] 周健,陈勉,金衍,等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报,2007,28(5):109–113.

    ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5): 109–113.

    [11] 王燚钊,侯冰,王栋,等. 页岩油多储集层穿层压裂缝高扩展特征[J]. 石油勘探与开发,2021,48(2):402–410. doi: 10.11698/PED.2021.02.17

    WANG Yizhao, HOU Bing, WANG Dong, et al. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs[J]. Petroleum Exploration and Development, 2021, 48(2): 402–410. doi: 10.11698/PED.2021.02.17

    [12] 侯冰,武安安,常智,等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报,2021,43(7):1322–1330. doi: 10.11779/CJGE202107018

    HOU Bing, WU Anan, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. doi: 10.11779/CJGE202107018

    [13] 侯冰,张儒鑫,刁策,等. 大斜度井水力压裂裂缝扩展模拟实验分析[J]. 中国海上油气,2016,28(5):85–91.

    HOU Bing, ZHANG Ruxin, DIAO Ce, et al. Experimental study on hydraulic fracture propagation in highly deviated wells[J]. China Offshore Oil and Gas, 2016, 28(5): 85–91.

    [14] 李润森. 干热岩储层压裂缝网形成力学机理及传热特性研究[D]. 西安: 西安石油大学, 2022.

    LI Runsen. Study on mechanism of fracture network forming during hydraulic fracturing and heat-transfer characteristic in hot dry rock reservoir[D]. Xi’an: Xi’an Shiyou University, 2022.

    [15] 柳贡慧,庞飞,陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版),2000,24(5):45–48.

    LIU Gonghui, PANG Fei, CHEN Zhixi. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of the University of Petroleum, China, 2000, 24(5): 45–48.

    [16] 侯冰,陈勉,李志猛,等. 页岩储集层水力裂缝网络扩展规模评价方法[J]. 石油勘探与开发,2014,41(6):763–768. doi: 10.11698/PED.2014.06.18

    HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 763–768. doi: 10.11698/PED.2014.06.18

    [17] 侯冰,程万,陈勉,等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业,2014,34(12):81–86.

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86.

    [18] 郭天魁,刘晓强,顾启林. 射孔井水力压裂模拟实验相似准则推导[J]. 中国海上油气,2015,27(3):108–112.

    GUO Tiankui, LIU Xiaoqiang, GU Qilin. Deduction of similarity laws of hydraulic fracturing simulation experiments for perforated wells[J]. China Offshore Oil and Gas, 2015, 27(3): 108–112.

    [19]

    ZHOU Dawei, ZHANG Guangqing, ZHAO Pengyun, et al. Effects of post-instability induced by supercritical CO2 phase change on fracture dynamic propagation[J]. Journal of Petroleum Science and Engineering, 2018, 162: 358–366. doi: 10.1016/j.petrol.2017.12.066

    [20] 付海峰,刘云志,梁天成,等. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学,2016,27(12):2231–2236. doi: 10.11764/j.issn.1672-1926.2016.12.2231

    FU Haifeng, LIU Yunzhi, LIANG Tiancheng, et al. Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J]. Natural Gas Geoscience, 2016, 27(12): 2231–2236. doi: 10.11764/j.issn.1672-1926.2016.12.2231

    [21]

    KEAR J, WHITE J, BUNGER A P, et al. Three dimensional forms of closely-spaced hydraulic fractures[R]. ISRM-ICHF-2013-024, 2013.

    [22] 侯冰,戴一凡,范濛,等. 基于相场法的酸压裂缝连通孔洞数值模拟[J]. 石油学报,2022,43(6):849–859.

    HOU Bing, DAI Yifan, FAN Meng, et al. Numerical simulation of pores connection by acid fracturing based on phase field method[J]. Acta Petrolei Sinica, 2022, 43(6): 849–859.

    [23] 邱园. 煤层裂缝扩展模拟与完井方式优选[D]. 北京: 中国石油大学(北京), 2011.

    QIU Yuan. Simulation of coal seam crack propagation and optimization of completion methods[D]. Beijing: China University of Petroleum(Beijing), 2011.

    [24] 侯冰,陈勉,谭鹏,等. 页岩气藏缝网压裂物理模拟的声发射监测初探[J]. 中国石油大学学报(自然科学版),2015,39(1):66–71.

    HOU Bing, CHEN Mian, TAN Peng, et al. Monitoring of hydraulic fracture network by acoustic emission method in simulated tri-axial fracturing system of shale gas reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(1): 66–71.

    [25] 贾利春,陈勉,孙良田,等. 结合CT技术的火山岩水力裂缝延伸实验[J]. 石油勘探与开发,2013,40(3):377–380. doi: 10.11698/PED.2013.03.18

    JIA Lichun, CHEN Mian, SUN Liangtian, et al. Experimental study on propagation of hydraulic fracture in volcanic rocks using industrial CT technology[J]. Petroleum Exploration and Development, 2013, 40(3): 377–380. doi: 10.11698/PED.2013.03.18

    [26]

    HOU Bing, ZHANG Qixing, LIU Xing, et al. Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells[J]. Energy, 2022, 260: 124906. doi: 10.1016/j.energy.2022.124906

    [27] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103.

    SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.

    [28] 史璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报,2021,6(1):92–113. doi: 10.3969/j.issn.2096-1693.2021.01.008

    SHI Can, LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92–113. doi: 10.3969/j.issn.2096-1693.2021.01.008

    [29]

    GU H, WENG X, LUND J, et al. Hydraulic fracture crossing natural fracture at nonorthogonal angles: a criterion and its validation[J]. SPE Production & Operations, 2012, 27(1): 20–26.

    [30] 侯冰,木哈达斯•叶尔甫拉提,付卫能,等. 页岩暂堵转向压裂水力裂缝扩展物模试验研究[J]. 辽宁石油化工大学学报,2020,40(4):98–104. doi: 10.3969/j.issn.1672-6952.2020.04.014

    HOU Bing, YEERFULATI Muhadasi, FU Weineng, et al. Experimental study on the hydraulic fracture propagation for shale temporary plugging and diverting fracturing[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2020, 40(4): 98–104. doi: 10.3969/j.issn.1672-6952.2020.04.014

    [31] 张旭,蒋廷学,贾长贵,等. 页岩气储层水力压裂物理模拟试验研究[J]. 石油钻探技术,2013,41(2):70–74. doi: 10.3969/j.issn.1001-0890.2013.02.014

    ZHANG Xu, JIANG Tingxue, JIA Changgui, et al. Physical simulation of hydraulic fracturing of shale gas reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70–74. doi: 10.3969/j.issn.1001-0890.2013.02.014

    [32] 曾义金,周俊,王海涛,等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报,2019,38(9):1758–1766.

    ZENG Yijin, ZHOU Jun, WANG Haitao, et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1758–1766.

    [33]

    HOU Bing, ZHANG Ruxin, ZENG Yijin, et al. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 2018, 170: 231–243. doi: 10.1016/j.petrol.2018.06.060

    [34] 考佳玮,金衍,付卫能,等. 注液方式对深层页岩裂缝形态影响实验研究[J]. 地下空间与工程学报,2019,15(1):32–38.

    KAO Jiawei, JIN Yan, FU Weineng, et al. Experiments research on the influence of injection method on hydraulic fracture morphology of deep shale[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(1): 32–38.

    [35]

    HOU Bing, CHANG Zhi, FU Weineng, et al. Fracture initiation and propagation in a deep shale gas reservoir subject to an alternating-fluid-injection hydraulic-fracturing treatment[J]. SPE Journal, 2019, 24(4): 1839–1855. doi: 10.2118/195571-PA

    [36]

    TAN Peng, JIN Yan, YUAN Liang, et al. Understanding hydraulic fracture propagation behavior in tight sandstone–coal interbedded formations: An experimental investigation[J]. Petroleum Science, 2019, 16(1): 148–160. doi: 10.1007/s12182-018-0297-z

    [37] 赵金洲,付永强,王振华,等. 页岩气水平井缝网压裂施工压力曲线的诊断识别方法[J]. 天然气工业,2022,42(2):11–19. doi: 10.3787/j.issn.1000-0976.2022.02.002

    ZHAO Jinzhou, FU Yongqiang, WANG Zhenhua, et al. Study on diagnosis model of shale gas fracture network fracturing operation pressure curves[J]. Natural Gas Industry, 2022, 42(2): 11–19. doi: 10.3787/j.issn.1000-0976.2022.02.002

    [38] 卞晓冰,蒋廷学,贾长贵,等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业,2016,36(2):60–65.

    BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60–65.

    [39]

    ZHANG Qixing, HOU Bing, PANG Huiwen, et al. A comparison of shale gas fracturing based on deep and shallow shale reservoirs in the United States and China[J]. Computer Modeling in Engineering & Sciences, 2022, 133(3): 471–507.

    [40] 程万,金衍,陈勉,等. 三维空间中水力裂缝穿透天然裂缝的判别准则[J]. 石油勘探与开发,2014,41(3):336–340. doi: 10.11698/PED.2014.03.09

    CHENG Wan, JIN Yan, CHEN Mian, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J]. Petroleum Exploration and Development, 2014, 41(3): 336–340. doi: 10.11698/PED.2014.03.09

    [41]

    RUNGAMORNRAT J, WHEELER M F, MEAR M E. A numerical technique for simulating nonplanar evolution of hydraulic fractures [R]. SPE 96968, 2005.

    [42] 赵金洲,王强,胡永全,等. 多孔眼裂缝竞争起裂与扩展数值模拟[J]. 天然气地球科学,2020,31(10):1343–1354.

    ZHAO Jinzhou, WANG Qiang, HU Yongquan, et al. Numerical simulation of multi-hole fracture competition initiation and propagation[J]. Natural Gas Geoscience, 2020, 31(10): 1343–1354.

    [43] 王士国,金衍,谭鹏,等. 煤系页岩储层多气共采水力裂缝扩展规律试验研究[J]. 岩土工程学报,2022,44(12):2290–2296. doi: 10.11779/CJGE202212016

    WANG Shiguo, JIN Yan, TAN Peng, et al. Experimental investigation on hydraulic fracture propagation of coal shale reservoirs under multi-gas co-production[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2290–2296. doi: 10.11779/CJGE202212016

    [44] 李连崇, 梁正召, 李根, 等. 水力压裂裂缝穿层及扭转扩展的三维模拟分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3208 − 3215.

    LI Lianchong, LIANG Zhengzhao, LI Gen, et al. Three-dimensional numerical analysis of traversing and twisted fractures in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 3208 − 3215.

    [45]

    SETTGAST R R, FU Pengcheng, WALSH S D C, et al. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(5): 627–653. doi: 10.1002/nag.2557

    [46] 曲占庆,田雨,李建雄,等. 水平井多段分簇压裂裂缝扩展形态数值模拟[J]. 中国石油大学学报(自然科学版),2017,41(1):102–109.

    QU Zhanqing, TIAN Yu, LI Jianxiong, et al. Numerical simulation study on fracture extension and morphology of multi-cluster staged fracturing for horizontal wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 102–109.

    [47] 周大伟,张广清,刘志斌,等. 致密砂岩多段分簇压裂中孔隙压力场对多裂缝扩展的影响[J]. 石油学报,2017,38(7):830–839. doi: 10.7623/syxb201707010

    ZHOU Dawei, ZHANG Guangqing, LIU Zhibin, et al. Influences of pore-pressure field on multi-fracture propagation during the multi-stage cluster fracturing of tight sandstone[J]. Acta Petrolei Sinica, 2017, 38(7): 830–839. doi: 10.7623/syxb201707010

    [48] 程万,蒋国盛,周治东,等. 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学,2018,39(12):4448–4456. doi: 10.16285/j.rsm.2017.2090

    CHENG Wan, JIANG Guosheng, ZHOU Zhidong, et al. Fracture competition of simultaneous propagation of multiple hydraulic fractures in a horizontal well[J]. Rock and Soil Mechanics, 2018, 39(12): 4448–4456. doi: 10.16285/j.rsm.2017.2090

    [49] 时贤,程远方,常鑫,等. 页岩气水平井段内多簇裂缝同步扩展模型建立与应用[J]. 石油钻采工艺,2018,40(2):247–252. doi: 10.13639/j.odpt.2018.02.018

    SHI Xian, CHENG Yuanfang, CHANG Xin, et al. Establishment and application of the model for the synchronous propagation of multi-cluster fractures in the horizontal section of shale-gas horizontal well[J]. Oil Drilling & Production Technology, 2018, 40(2): 247–252. doi: 10.13639/j.odpt.2018.02.018

    [50]

    LU Qianli, LIU Zhuang, GUO Jianchun, et al. Numerical investigation of fracture interference effects on multi-fractures propagation in fractured shale[J]. Engineering Fracture Mechanics, 2023, 286: 109322. doi: 10.1016/j.engfracmech.2023.109322

    [51]

    LI Minghui, LV Wenjing, LIU Jinjun, et al. Effect of perforation friction on 3D in-stage multiple fracture propagation: A numerical study[J]. Engineering Fracture Mechanics, 2022, 267: 108415. doi: 10.1016/j.engfracmech.2022.108415

    [52] 王小华,罗浩然,张丰收. 水平井射孔压裂完井下控制近井筒裂缝复杂度的参数优化[J]. 岩石力学与工程学报,2022,41(6):1223–1234.

    WANG Xiaohua, LUO Haoran, ZHANG Fengshou. Parameter optimization for controlling the complexity of near-wellbore fractures for perforated fracturing of horizontal wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1223–1234.

    [53] 侯冰,常智,武安安,等. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J]. 石油学报,2022,43(1):75–90.

    HOU Bing, CHANG Zhi, WU Anan, et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar Sag[J]. Acta Petrolei Sinica, 2022, 43(1): 75–90.

    [54] 王磊,盛志民,赵忠祥,等. 吉木萨尔页岩油水平井大段多簇压裂技术[J]. 石油钻探技术,2021,49(4):106–111. doi: 10.11911/syztjs.2021091

    WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large-section and multi-cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 106–111. doi: 10.11911/syztjs.2021091

    [55] 唐煊赫,朱海燕,车明光,等. 裂缝性页岩暂堵压裂复杂裂缝扩展模型与暂堵时机[J]. 石油勘探与开发,2023,50(1):139–151. doi: 10.11698/PED.20221011

    TANG Xuanhe, ZHU Haiyan, CHE Mingguang, et al. Complex fracture propagation model and plugging timing optimization for temporary plugging fracturing in naturally fractured shale[J]. Petroleum Exploration and Development, 2023, 50(1): 139–151. doi: 10.11698/PED.20221011

    [56] 郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183. doi: 10.11911/syztjs.2023039

    GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances in temporary plugging and diversion fracturing technology for shale gas reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183. doi: 10.11911/syztjs.2023039

    [57] 李彦超,张庆,沈建国,等. 页岩气藏长段多簇暂堵体积改造技术[J]. 天然气工业,2022,42(2):143–150. doi: 10.3787/j.issn.1000-0976.2022.02.015

    LI Yanchao, ZHANG Qing, SHEN Jianguo, et al. Volumetric stimulation technology of long-section multi-cluster temporary plugging in shale gas reservoirs[J]. Natural Gas Industry, 2022, 42(2): 143–150. doi: 10.3787/j.issn.1000-0976.2022.02.015

    [58] 伊西锋. 非常规油气水平井管内多级分段压裂新技术[J]. 石油机械,2014,42(4):62–66. doi: 10.3969/j.issn.1001-4578.2014.04.015

    YI Xifeng. New technology of multistage staged fracturing for unconventional oil-gas horizontal well[J]. China Petroleum Machinery, 2014, 42(4): 62–66. doi: 10.3969/j.issn.1001-4578.2014.04.015

    [59] 金智荣,孙悦铭,包敏新,等. 基于真三轴压裂物理模拟系统的暂堵压裂裂缝扩展规律试验研究[J]. 非常规油气,2021,8(6):98–105. doi: 10.19901/j.fcgyq.2021.06.14

    JIN Zhirong, SUN Yueming, BAO Minxin, et al. Experimental study on crack propagation law of temporary plugging fracturing based on true triaxial fracturing physical simulation system[J]. Unconventional Oil & Gas, 2021, 8(6): 98–105. doi: 10.19901/j.fcgyq.2021.06.14

    [60] 曹学军,王明贵,康杰,等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业,2019,39(7):81–87. doi: 10.3787/j.issn.1000-0976.2019.07.010

    CAO Xuejun, WANG Minggui, KANG Jie, et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 81–87. doi: 10.3787/j.issn.1000-0976.2019.07.010

    [61] 陈钊,王天一,姜馨淳,等. 页岩气水平井段内多簇压裂暂堵技术的数值模拟研究及先导实验[J]. 天然气工业,2021,41(增刊1):158–163.

    CHEN Zhao, WANG Tianyi, JIANG Xinchun, et al. Numerical simulation study and pilot test of multi-cluster fracturing and temporary plugging technology in the horizontal hole section of shale-gas horizontal wells[J]. Natural Gas Industry, 2021, 41(supplement1): 158–163.

    [62] 杨恒林,吕嘉昕,谭鹏,等. 基于三维扫描技术的页岩暂堵压裂物理模拟实验[J]. 断块油气田,2022,29(1):118–123.

    YANG Henglin, LYU Jiaxin, TAN Peng, et al. Physical simulation experiment on shale temporary plugging and fracturing based on 3D scanning technology[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 118–123.

    [63] 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21.

    JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21.

    [64]

    HUANG Liuke, DONTSOV E, FU Haifeng, et al. Hydraulic fracture height growth in layered rocks: perspective from DEM simulation of different propagation regimes[J]. International Journal of Solids and Structures, 2022, 238: 111395. doi: 10.1016/j.ijsolstr.2021.111395

    [65]

    ZHANG Fengshou, HUANG Liuke, YANG Lin, et al. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation[J]. Petroleum Science, 2022, 19(1): 296–308. doi: 10.1016/j.petsci.2021.09.014

    [66]

    WANG Xiaohua, ZHANG Fengshou, YIN Zirui, et al. Numerical investigation of refracturing with/without temporarily plugging diverters in tight reservoirs[J]. Petroleum Science, 2022, 19(5): 2210–2226. doi: 10.1016/j.petsci.2022.05.006

    [67] 张其星,侯冰,武安安,等. 昭通龙马溪组页岩坍塌风险分层研究与应用[J]. 钻井液与完井液,2023,40(3):279–288.

    ZHANG Qixing, HOU Bing, WU Anan, et al. Study and application on risk stratification of wellbore collapse for the Longmaxi Formation shale in Zhaotong City[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 279–288.

    [68] 金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023,51(4):159–169.

    JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159–169.

    [69]

    XIONG Q, BRUDZINSKI M R, GOSSETT D, et al. Seismic magnitude clustering is prevalent in field and laboratory catalogs[J]. Nature Communications, 2023, 14(1): 2056. doi: 10.1038/s41467-023-37782-5

  • 期刊类型引用(8)

    1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
    2. 肖元相,解永刚,李明瑞,唐梅荣,陈宝春,周长静,邝聃,李达,苏煜彬,段志锋,刘欣佳. 铝土岩储层水平井完井分段压裂关键技术及应用——以鄂尔多斯盆地陇东地区太原组为例. 天然气地球科学. 2024(08): 1467-1479 . 百度学术
    3. 蔡东胜,孙梦慈,马洪亮,杨浩. 宁庆区块低固相阳离子聚合物钻井液技术研究与试验. 应用化工. 2024(12): 2832-2837 . 百度学术
    4. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    5. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    6. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    7. 赵宏波,季伟,王冲,李兴宝,陈国飞. 榆林气田标志层法和沉积旋回法水平井导向技术. 石油钻探技术. 2018(06): 39-46 . 本站查看
    8. 张时中. 三种钻井提速工具在陇东气田的应用研究. 河南科技. 2018(14): 115-117 . 百度学术

    其他类型引用(1)

图(8)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  108
  • PDF下载量:  118
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-07-23
  • 修回日期:  2023-09-03
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回