泌阳凹陷中低成熟度页岩油核磁共振评价方法

王志战, 韩玉娇, 金芸芸, 王勇, 罗曦, 严永新

王志战,韩玉娇,金芸芸,等. 泌阳凹陷中低成熟度页岩油核磁共振评价方法[J]. 石油钻探技术,2023, 51(5):58-65. DOI: 10.11911/syztjs.2023094
引用本文: 王志战,韩玉娇,金芸芸,等. 泌阳凹陷中低成熟度页岩油核磁共振评价方法[J]. 石油钻探技术,2023, 51(5):58-65. DOI: 10.11911/syztjs.2023094
WANG Zhizhan, HAN Yujiao, JIN Yunyun, et al. Nuclear magnetic resonance evaluation method of shale oil with medium and low maturity in Biyang Sag [J]. Petroleum Drilling Techniques,2023, 51(5):58-65. DOI: 10.11911/syztjs.2023094
Citation: WANG Zhizhan, HAN Yujiao, JIN Yunyun, et al. Nuclear magnetic resonance evaluation method of shale oil with medium and low maturity in Biyang Sag [J]. Petroleum Drilling Techniques,2023, 51(5):58-65. DOI: 10.11911/syztjs.2023094

泌阳凹陷中低成熟度页岩油核磁共振评价方法

基金项目: 国家重点研发计划课题“井筒稳定性闭环响应机制与智能调控方法”(编号:2019YFA0708303)、国家自然科学基金企业创新发展联合基金项目“海相深层油气富集机理与关键工程技术基础研究”(编号:U19B6003)和中国石化基础前瞻项目“中低成熟度页岩油多组分弛豫机理及评价方法”(编号:P22233)联合资助
详细信息
    作者简介:

    王志战(1969—),男,山东栖霞人,1991年毕业于西北大学岩石矿物学及地球化学专业,2006年获西北大学矿产普查与勘探专业博士学位,正高级工程师,主要从事录井基础理论与新技术新方法研究。系本刊编委。E-mail: wangzz.sripe@sinopec.com

  • 中图分类号: TE122.2+3

Nuclear Magnetic Resonance Evaluation Method of Shale Oil with Medium and Low Maturity in Biyang Sag

  • 摘要:

    中低成熟度页岩油孔隙结构复杂,孔隙致密,探测难度大,干酪根、沥青、类固体等组分发育,甜点准确评价困难。为准确评价中低成熟度页岩储层的储集特性和含油特性,以低场核磁共振技术为主要研究手段,对比分析了磁场强度、探头口径、回波间隔和波峰偏移等影响核磁共振信号采集精度的因素,确定了适用于短弛豫组分发育的中低成熟度页岩油高精度采集参数。采用高分辨率一维、二维核磁共振测量,结合氮气吸附、压汞、地化分析等实验结果,评价了泌阳凹陷YY1井的储集性、含油性,建立了基于二维核磁谱图组分的干酪根含量表征模型。研究结果表明,中低成熟度页岩油的核磁共振测量对仪器的回波间隔要求更高,在仪器硬件无法缩短TE条件下,可以通过波峰偏移方式采集更多的短弛豫组分信息,以获得更具备代表性的图谱。核磁共振技术能够实现中低成熟度页岩油储层和烃源岩多种特性的高精度评价,开展深入信息挖掘和研究对中低成熟度页岩油高效勘探开发具有重要作用。

    Abstract:

    The pore structure of shale oil with medium and low maturity is complex, and the detection of pore density is difficult. In addition, kerogen, asphalt, and solid-like components are developed, making it difficult to accurately evaluate sweet spots. In order to accurately evaluate the reservoir and oil-bearing characteristics of shale reservoirs with medium and low maturity, low-field nuclear magnetic resonance (NMR) technology was taken as the main research method. The factors affecting the acquisition accuracy of NMR signals, such as magnetic field intensity, probe aperture, echo interval, and peak shift, were compared and analyzed, and the high-precision acquisition parameters of shale oil with medium and low maturity suitable for the development of short relaxation components were determined. The reservoir and oil-bearing characteristics of Well YY1 in Biyang Sag were evaluated by using high-resolution 1D and 2D NMR measurements, combined with the experimental results of nitrogen adsorption, mercury injection, and geochemical analysis, and a characterization model of kerogen content based on 2D NMR components was established. The results show that the NMR measurement of shale oil with medium and low maturity puts forward higher requirements for the echo interval of instruments. Under the condition that TE cannot be shortened by instrument hardware, more information of short relaxation components can be collected by means of peak shift to obtain more representative spectra. NMR technology can realize the high-precision evaluation of various characteristics of shale oil reservoirs and source rocks with medium and low maturity. It is of great role to carry out in-depth information mining and research for the efficient exploration and development of shale oil with medium and low maturity.

  • 图  1   同一块页岩岩样的不同磁场强度核磁共振T2

    Figure  1.   T2 NMR spectra of the same shale with different field strengths

    图  2   同一块页岩岩样的不同磁场强度核磁共振T1-T2

    Figure  2.   T1-T2 NMR spectra of the same shale with different field strengths

    图  3   不同口径探头条件下核磁共振T1-T2

    Figure  3.   T1-T2 NMR spectra under different probe apertures

    图  4   同一岩样不同回波间隔条件下核磁共振T2

    Figure  4.   T2 NMR spectra of the same core under different echo intervals

    图  5   同一岩样不同回波间隔条件下核磁共振T1-T2

    Figure  5.   T1-T2 NMR spectra of the same core under different echo intervals

    图  6   CPMG脉冲序列示意

    Figure  6.   CPMG pulse sequence

    图  7   不同波峰偏移参数条件下的核磁共振T1-T2

    Figure  7.   T1-T2 NMR spectra under different peak shift parameters

    图  8   不同类型孔隙度划分示意

    Figure  8.   Division of different types of porosity

    图  9   核磁共振与氮气吸附-压汞对比

    Figure  9.   Comparison of NMR and nitrogen adsorption with mercury injection measurement results

    图  10   页岩多组分二维T1-T2核磁共振识别图版

    Figure  10.   2D T1-T2 NMR identification plate for shale multi-components

    图  11   孔隙结构与含油性的关系

    Figure  11.   Relationship between pore structure and oil-bearing characteristic

    图  12   核磁共振T1-T2谱中P1区域信号强度与干酪根裂解烃含量S2-2的相关性

    Figure  12.   Correlation between P1 region signal quantity in T1-T2 NMR spectra and kerogen cracking hydrocarbon content S2-2

    图  13   YY1井储层甜点综合评价结果

    Figure  13.   Comprehensive evaluation of reservoir sweet spots in Well YY1

  • [1] 杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559.

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559.

    [2] 盛湘,张烨. 国外页岩油开发技术进展及其启示[J]. 石油地质与工程,2015,29(6):80–83.

    SHENG Xiang, ZHANG Ye. Development technology advances and the enlightenment of foreign shale oil[J]. Petroleum Geology and Engineering, 2015, 29(6): 80–83.

    [3] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.

    [4] 金之钧,王冠平,刘光祥,等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报,2021,42(7):821–835.

    JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821–835.

    [5] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575.

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575.

    [6]

    FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55–62. doi: 10.1016/j.petrol.2015.11.006

    [7]

    ALI M R, ANAND V, ABUBAKAR A, et al. Characterizing light versus bound hydrocarbon in a shale reservoir by integrating new two-dimensional NMR and advanced spectroscopy measure-ments[R]. URTEC-2457043-MS, 2016.

    [8]

    NICOT B, VORAPALAWUT N, ROUSSEAU B, et al. Estimating saturations in organic shales using 2D NMR[J]. Petrophysics, 2016, 57(1): 19–29.

    [9]

    WASHBURN K E, CHENG Yuesheng. Detection of intermolecular homonuclear dipolar coupling in organic rich shale by transverse relaxation exchange[J]. Journal of Magnetic Resonance, 2017, 278: 18–24. doi: 10.1016/j.jmr.2017.02.022

    [10]

    MEHANA M, EL-MONIER I. Shale characteristics impact on nuclear magnetic resonance (NMR) fluid typing methods and correlations[J]. Petroleum, 2016, 2(2): 138–147. doi: 10.1016/j.petlm.2016.02.002

    [11]

    KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167–177. doi: 10.1016/j.fuel.2018.07.100

    [12] 李骥远,卢双舫. 利用核磁共振T1-T2谱技术研究页岩油可动性[J]. 中国锰业,2017,35(4):169–172.

    LI Jiyuan, LU Shuangfang. Using MRI T1-T2 technology to research the mobility of shale oil[J]. China’s Manganese Industry, 2017, 35(4): 169–172.

    [13]

    LI Jinbu, HUANG Wenbiao, LU Shuangfang, et al. Nuclear magnetic resonance T1T2 map division method for hydrogen-bearing components in continental shale[J]. Energy & Fuels, 2018, 32(9): 9043–9054.

    [14]

    ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks[J]. Marine and Petroleum Geology, 2020, 114: 104210. doi: 10.1016/j.marpetgeo.2019.104210

    [15] 王志战. 页岩油储层D-T2核磁共振解释方法[J]. 天然气地球科学,2020,31(8):1178–1184.

    WANG Zhizhan. Discuss on D-T2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178–1184.

    [16] 郭江峰,徐陈昱,谢然红,等. 含微裂缝致密砂岩核磁共振响应机理研究[J]. 石油钻探技术,2022,50(4):121–128.

    GUO Jiangfeng, XU Chenyu, XIE Ranhong, et al. Study on the NMR response mechanism of micro-fractured tight sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121–128.

    [17] 肖立志, 柴细元, 孙宝喜, 等. 核磁共振测井资料解释与应用导论[M]. 北京: 石油工业出版社, 2001.

    XIAO Lizhi, CHAI Xiyuan, SUN Baoxi, et al. NMR logging interpretation and China case studies[M]. Beijing: Petroleum Industry Press, 2001.

    [18]

    KLEINBERG R L, KENYON W E, MITRA P P. Mechanism of NMR relaxation of fluids in rock[J]. Journal of Magnetic Resonance, Series A, 1994, 108(2): 206–214. doi: 10.1006/jmra.1994.1112

    [19]

    HÜRLIMANN M D, VENKATARAMANAN L, FLAUM C. The diffusion–spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media[J]. The Journal of Chemical Physics, 2002, 117(22): 10223–10232. doi: 10.1063/1.1518959

    [20]

    BLOEMBERGEN N, PURCELL E M, POUND R V. Relaxation effects in nuclear magnetic resonance absorption[J]. Physical Review A, 1948, 73(7): 679–712. doi: 10.1103/PhysRev.73.679

    [21]

    BROWNSTEIN K R, TARR C E. Importance of classical diffusion in NMR studies of water in biological cells[J]. Physical Review A, 1979, 19(6): 2446–2453. doi: 10.1103/PhysRevA.19.2446

    [22] 张鹏飞. 基于核磁共振技术的页岩油储集、赋存与可流动性研究[D]. 青岛: 中国石油大学(华东), 2019.

    ZHANG Pengfei. Research on shale oil reservoir, occurrence and movability using nuclear magnetic resonance (NMR)[D]. Qingdao: China University of Petroleum(East China), 2019.

    [23]

    LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. doi: 10.1016/j.marpetgeo.2020.104311

    [24] GB/T 41611—2022 页岩气术语和定义[S].

    GB/T 41611—2022 Terms and definitions of shale gas[S].

  • 期刊类型引用(17)

    1. 王旭锋,牛志军,张磊,李翔宇,王纪尧,常泽超,陈旭阳. 超声振动在矿山煤岩致裂中的研究进展与展望. 煤炭科学技术. 2024(01): 232-243 . 百度学术
    2. 杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 . 百度学术
    3. 向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 . 百度学术
    4. 黄继庆,胡海,樊思成,刘伟吉,祝效华. 基于扩展PFC2D-GBM模型的单齿切削花岗岩破碎机制. 中国石油大学学报(自然科学版). 2023(02): 81-89 . 百度学术
    5. 刘伟吉,张有建,祝效华,胡海,何灵,陈梦秋. 影响高压电脉冲破岩效率的关键因素分析. 天然气工业. 2023(10): 112-124 . 百度学术
    6. 齐悦,柳贡慧,李军,查春青,田玉栋,李玉梅. 基于单齿多维度冲击破岩机理仿真研究. 石油机械. 2023(12): 1-7 . 百度学术
    7. 王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 . 百度学术
    8. 赵研,张丛珊,高科,张增增,赵大军,李家晟,吕晓姝,平天才. 超声波辅助PDC切削齿振动破岩仿真分析. 钻探工程. 2021(04): 11-20 . 百度学术
    9. 路宗羽,郑珺升,蒋振新,赵飞. 超声波高频旋冲钻井技术破岩效果试验研究. 石油钻探技术. 2021(02): 20-25 . 本站查看
    10. 李鹏,蔡美峰. 深部金属矿产资源开发面临的挑战及新见解(英文). Transactions of Nonferrous Metals Society of China. 2021(11): 3478-3505 . 百度学术
    11. 聂佳辉,吴志鑫,雷磊,郑靖,周仲荣. TBM的刀具改性与辅助破岩技术研究现状. 机械. 2021(12): 1-10+19 . 百度学术
    12. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 . 百度学术
    13. 徐梓辰,金衍,腾学清. 液压式应力波辅助破岩工具设计及实验研究. 机床与液压. 2020(19): 1-7 . 百度学术
    14. 刘春生,韩德亮,那洪亮. 碟盘振动切削煤岩机构的动力学模型与幅频特性. 黑龙江科技大学学报. 2020(05): 499-504 . 百度学术
    15. 李玉梅,张涛,苏中,于丽维,刘建明. 复合冲击频率配合特性模拟研究. 石油机械. 2019(09): 30-36 . 百度学术
    16. 索忠伟. ?228.6mm射流冲击器研制及硬地层提速试验. 石油钻探技术. 2019(04): 54-58 . 本站查看
    17. 李玉梅,于丽维,张涛,苏中,刘建明. 复合冲击钻井立体破岩特性模拟研究. 系统仿真学报. 2019(11): 2471-2476 . 百度学术

    其他类型引用(23)

图(13)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  56
  • PDF下载量:  74
  • 被引次数: 40
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-08-21
  • 录用日期:  2023-09-04
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回