压裂工况下近井筒地应力及套管载荷分布规律研究

赵欢, 李玮, 唐鹏飞, 王晓, 张明慧, 王剑波

赵欢,李玮,唐鹏飞,等. 压裂工况下近井筒地应力及套管载荷分布规律研究[J]. 石油钻探技术,2023, 51(5):106-111. DOI: 10.11911/syztjs.2023092
引用本文: 赵欢,李玮,唐鹏飞,等. 压裂工况下近井筒地应力及套管载荷分布规律研究[J]. 石油钻探技术,2023, 51(5):106-111. DOI: 10.11911/syztjs.2023092
ZHAO Huan, LI Wei, TANG Pengfei, et al. Study on the distribution law of near-wellbore in-situ stress and casing load under fracturing conditions [J]. Petroleum Drilling Techniques,2023, 51(5):106-111. DOI: 10.11911/syztjs.2023092
Citation: ZHAO Huan, LI Wei, TANG Pengfei, et al. Study on the distribution law of near-wellbore in-situ stress and casing load under fracturing conditions [J]. Petroleum Drilling Techniques,2023, 51(5):106-111. DOI: 10.11911/syztjs.2023092

压裂工况下近井筒地应力及套管载荷分布规律研究

基金项目: 国家自然科学基金项目“万米深井PDC钻头冲击破岩机理及提速方法研究”(编号:52274005)、东北石油大学人才引进科研启动项目“页岩油储层水平井压裂复杂裂缝控制机制研究”(编号:13051202008)联合资助
详细信息
    作者简介:

    赵欢(1990—),女,河北石家庄人,2013年毕业于华北理工大学石油工程专业,2020年获东北石油大学石油与天然气工程专业博士学位,讲师,主要从事非常规储层增产改造技术研究。E-mail: zhaohuan7696@163.com

    通讯作者:

    李玮,liwei@nepu.edu.cn

  • 中图分类号: TE357.1+1

Study on the Distribution Law of Near-Wellbore in-situ Stress and Casing Load under Fracturing Conditions

  • 摘要:

    为了研究水力压裂工况下套管损坏机理及套管载荷影响因素,开展了储层岩石力学参数测试,建立了套管–水泥环–地层–裂缝的多场耦合有限元分析模型,分析了水力压裂扩展时近井筒地应力及套管载荷的分布规律及影响因素。研究结果表明,储层中天然裂缝的存在引起水力裂缝的非均匀扩展,套管承受非均匀载荷;当储层地应力差增加、弹性模量降低时,近井筒地应力及套管载荷增加;天然裂缝数量及天然裂缝分布形态对近井筒地应力及套管载荷的影响较为复杂。研究结果为页岩储层优化固井设计及压裂设计、减少套管损坏问题提供了理论依据。

    Abstract:

    In order to study the casing damage mechanism and the influencing factors of casing load under hydraulic fracturing conditions, rock mechanics tests were carried out, and a multi-field coupled finite element analysis model of casing, cement sheathe, formation, and fracture was established. Distribution law and influencing factors of near-wellbore in-situ stress and casing load under hydraulic fracturing propagation were analyzed. The results showed that the natural fractures in the reservoir caused the non-uniform propagation of hydraulic fractures, and the casing was subjected to a non-uniform load. The in-situ stress difference increased and the elastic modulus decreased while the near-wellbore in-situ stress and casing load increased. The influence of the natural fracture number and the distribution pattern of natural fractures on the near-wellbore in-situ stress and casing load were complicated. The research results provide a theoretical basis for optimizing the cementing design and fracturing design of shale reservoirs and reducing casing damage.

  • 图  1   近井筒水力裂缝与天然裂缝相互作用模型

    Figure  1.   Model of interaction between near-wellbore hydraulic fractures and natural fractures

    图  2   套管周围应力分布

    Figure  2.   Stress distribution around casing

    图  3   套管–水泥环–储层–裂缝耦合几何模型

    Figure  3.   Geometric model of casing-cement sheath-formation-fracture coupling

    图  4   压裂前后套管载荷对比

    Figure  4.   Comparison of casing load before and after fracturing

    图  5   不同地应力差时的轴向地应力及最大套管载荷

    Figure  5.   In-situ stress and maximum casing load under different in-situ stress differences

    图  6   弹性模量对地应力及最大套管载荷的影响

    Figure  6.   Influence of elasticity modulus on in-situ stress and maximum casing load

    图  7   天然裂缝条数对地应力及最大套管载荷的影响

    Figure  7.   Influence of natural fracture number on in-situ stress and maximum casing load

    图  8   裂缝形态对地应力及最大套管载荷的影响

    Figure  8.   Influence of fracture pattern on in-situ stress and maximum casing load

    表  1   岩石力学参数测试结果

    Table  1   Test results of rock mechanics

    岩心编号深度/m围压/MPa弹性模量/GPa泊松比应力差/MPa
    H12557.8219.317.710.1913.38
    H22554.2619.117.950.1744.01
    H32549.2118.919.250.1822.16
    H42528.3519.019.650.1622.02
    平均18.640.1772.89
    下载: 导出CSV
  • [1] 蒲春生,郑恒,杨兆平,等. 水平井分段体积压裂复杂裂缝形成机制研究现状与发展趋势[J]. 石油学报,2020,41(12):1734–1743.

    PU Chunsheng, ZHENG Heng, YANG Zhaoping, et al. Research status and development trend of the formation mechanism of complex fractures by staged volume fracturing in horizontal wells[J]. Acta Petrolei Sinica, 2020, 41(12): 1734–1743.

    [2]

    LIU Kui, GAO Deli, WANG Yanbin, et al. Effect of local loads on shale gas well integrity during hydraulic fracturing process[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 291–302. doi: 10.1016/j.jngse.2016.11.053

    [3] 张宏峰. 页岩油水平井压裂后变形套管液压整形技术[J/OL]. 石油钻探技术: 1-11[2023-07-30]. http://kns.cnki.net/kcms/detail/11.1763.TE.20230531.1452.004.html.

    ZHANG Hongfeng. Hydraulic shaping technology of deformed casing after fracturing in horizontal well of shale oil[J/OL]. Petroleum Drilling Techniques:1-11[2023-07-30]. http://kns.cnki.net/kcms/detail/11.1763.TE.20230531.1452.004.html.

    [4] 刘学伟,田福春,李东平,等. 沧东凹陷孔二段页岩压裂套变原因分析及预防对策[J]. 石油钻采工艺,2022,44(1):77–82.

    LIU Xuewei, TIAN Fuchun, LI Dongping, et al. Cause analysis and preventive countermeasures for casing deformation when fracturing shale in Kong 2 member in Cangdong Sag[J]. Oil Drilling & Production Technology, 2022, 44(1): 77–82.

    [5] 席岩,李军,柳贡慧,等. 页岩气水平井多级压裂过程中套管变形研究综述[J]. 特种油气藏,2019,26(1):1–6.

    XI Yan, LI Jun, LIU Gonghui, et al. Overview of casing deformation in multistage fracturing of shale gas horizontal wells[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 1–6.

    [6] 刘尧文,明月,张旭东,等. 涪陵页岩气井“套中固套”机械封隔重复压裂技术[J]. 石油钻探技术,2022,50(3):86–91.

    LIU Yaowen, MING Yue, ZHANG Xudong, et al. “Casing in casing” mechanical isolation refracturing technology in Fuling Shale Gas Wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86–91.

    [7] 毛良杰,林颢屿,余星颖,等. 页岩气储层断层滑移对水平井套管变形的影响[J]. 断块油气田,2021,28(6):755–760.

    MAO Liangjie, LIN Haoyu, YU Xingying, et al. Influence of fault slip on casing deformation of horizontal well in shale gas reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 755–760.

    [8] 林志伟,钟守明,宋琳,等. 体积压裂改造非对称性对套管损坏影响机理[J]. 特种油气藏,2021,28(6):158–164.

    LIN Zhiwei, ZHONG Shouming, SONG Lin, et al. Study on the mechanism of the asymmetry effect of SRV fracturing on casing damage[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 158–164.

    [9] 李皋,李泽,蒋祖军,等. 页岩-液体作用对套管变形的影响研究[J]. 西南石油大学学报(自然科学版),2021,43(1):103–110.

    LI Gao, LI Ze, JIANG Zujun, et al. A study on the effect of shale-liquid reaction on casing deformation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 103–110.

    [10] 于浩,练章华,徐晓玲,等. 页岩气直井体积压裂过程套管失效的数值模拟[J]. 石油机械,2015,43(3):73–77.

    YU Hao, LIAN Zhanghua, XU Xiaoling, et al. Numerical simulation for casing failure during volumetric fracturing of shale gas vertical wells[J]. China Petroleum Machinery, 2015, 43(3): 73–77.

    [11]

    LIAN Zhanghua, YU Hao, LIN Tiejun, et al. A study on casing deformation failure during multi-stage hydraulic fracturing for the stimulated reservoir volume of horizontal shale wells[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 538–546. doi: 10.1016/j.jngse.2015.02.028

    [12] 范明涛,柳贡慧,李军,等. 页岩气井温压耦合下固井质量对套管应力的影响[J]. 石油机械,2016,44(8):1–5.

    FAN Mingtao, LIU Gonghui, LI Jun, et al. Effect of cementing quality on casing stress of shale gas well under heat-mechanical coupling[J]. China Petroleum Machinery, 2016, 44(8): 1–5.

    [13] 范明涛,李军,柳贡慧,等. 页岩气水平井体积压裂过程中套损机理研究[J]. 石油机械,2018,46(4):82–87.

    FAN Mingtao, LI Jun, LIU Gonghui, et al. Study on casing damage mechanism in volume fracturing of shale gas horizontal well[J]. China Petroleum Machinery, 2018, 46(4): 82–87.

    [14] 张鑫,李军,何龙,等. 基于套管保护的页岩气井压裂簇间距优选[J]. 石油机械,2021,49(12):105–112.

    ZHANG Xin, LI Jun, HE Long, et al. Optimization of fracturing cluster spacing in shale gas wells based on casing protection[J]. China Petroleum Machinery, 2021, 49(12): 105–112.

    [15] 陈朝伟,王鹏飞,项德贵. 基于震源机制关系的长宁–威远区块套管变形分析[J]. 石油钻探技术,2017,45(4):110–114.

    CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of casing deformation in the Changning-Weiyuan Block based on focal mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110–114.

    [16] 王素玲,杨磊. 页岩层剪切套损的数值模拟及影响因素分析[J]. 石油机械,2018,46(1):100–105.

    WANG Suling, YANG Lei. Numerical simulation and influencing factors analysis on casing shear damage in shale layer[J]. China Petroleum Machinery, 2018, 46(1): 100–105.

    [17] 李梅. 浅部地层泥岩蠕变套损机理研究[D]. 大庆: 东北石油大学, 2021.

    LI Mei. Study on mechanism of shallow mudstone creep casing damage[D]. Daqing: Northeast Petroleum University, 2021.

    [18] 陈勉, 金衍, 张广清. 石油工程岩石力学基础[M]. 北京: 石油工业出版社, 2011.

    CHEN Mian, JIN Yan, ZHANG Guangqing. Introduction to rock mechanics in petroleum engineering[M]. Beijing: Petroleum Industry Press, 2011.

    [19] 李玮,赵欢,李思琪,等. 页岩裂缝网络的几何特征二维表征及连通性分析[J]. 石油钻探技术,2017,45(6):70–76.

    LI Wei, ZHAO Huan, LI Siqi, et al. 2D characterization of geometric features and connectivity of fracture networks in shale formations[J]. Petroleum Drilling Techniques, 2017, 45(6): 70–76.

    [20] 李玮,孙文峰,唐鹏,等. 基于拓扑结构的岩石裂缝网络表征方法[J]. 天然气工业,2017,37(6):22–27.

    LI Wei, SUN Wenfeng, TANG Peng, et al. A method for rock fracture network characterization based on topological structure[J]. Natural Gas Industry, 2017, 37(6): 22–27.

  • 期刊类型引用(8)

    1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
    2. 肖元相,解永刚,李明瑞,唐梅荣,陈宝春,周长静,邝聃,李达,苏煜彬,段志锋,刘欣佳. 铝土岩储层水平井完井分段压裂关键技术及应用——以鄂尔多斯盆地陇东地区太原组为例. 天然气地球科学. 2024(08): 1467-1479 . 百度学术
    3. 蔡东胜,孙梦慈,马洪亮,杨浩. 宁庆区块低固相阳离子聚合物钻井液技术研究与试验. 应用化工. 2024(12): 2832-2837 . 百度学术
    4. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    5. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    6. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    7. 赵宏波,季伟,王冲,李兴宝,陈国飞. 榆林气田标志层法和沉积旋回法水平井导向技术. 石油钻探技术. 2018(06): 39-46 . 本站查看
    8. 张时中. 三种钻井提速工具在陇东气田的应用研究. 河南科技. 2018(14): 115-117 . 百度学术

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  49
  • PDF下载量:  77
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回