基于灰色关联分析的页岩油甜点综合评价方法以渤海湾盆地渤南洼陷为例

王春伟, 杜焕福, 孙鑫, 戴彩丽, 杨金莉, 陈荣华

王春伟,杜焕福,孙鑫,等. 基于灰色关联分析的页岩油甜点综合评价方法:以渤海湾盆地渤南洼陷为例[J]. 石油钻探技术,2023, 51(5):130-138. DOI: 10.11911/syztjs.2023085
引用本文: 王春伟,杜焕福,孙鑫,等. 基于灰色关联分析的页岩油甜点综合评价方法:以渤海湾盆地渤南洼陷为例[J]. 石油钻探技术,2023, 51(5):130-138. DOI: 10.11911/syztjs.2023085
WANG Chunwei, DU Huanfu, SUN Xin, et al. Comprehensive evaluation method of shale oil sweet spot based on grey correlation analysis: a case study of Bonan Sag in Bohai Bay Basin [J]. Petroleum Drilling Techniques,2023, 51(5):130-138. DOI: 10.11911/syztjs.2023085
Citation: WANG Chunwei, DU Huanfu, SUN Xin, et al. Comprehensive evaluation method of shale oil sweet spot based on grey correlation analysis: a case study of Bonan Sag in Bohai Bay Basin [J]. Petroleum Drilling Techniques,2023, 51(5):130-138. DOI: 10.11911/syztjs.2023085

基于灰色关联分析的页岩油甜点综合评价方法——以渤海湾盆地渤南洼陷为例

基金项目: 中石化石油工程技术服务有限公司研发计划项目“测录定一体化技术应用平台研究”(编号:SG20-16K)、青岛市博士后项目“东营凹陷页岩油测录井产能预测方法研究”(编号:QDBSH20220201023)和中石化经纬有限公司博士后研究项目“东营凹陷页岩油测录井产能预测方法研究”(编号:JWBH2203)联合资助
详细信息
    作者简介:

    王春伟(1988—),男,山东东营人,2013年毕业于中国石油大学(华东)资源勘查工程专业,2016年获中国石油大学(华东)地质资源与地质工程专业硕士学位,工程师,主要从事油气藏开发地质研究。E-mail:584019559@qq.com。

    通讯作者:

    孙鑫,upcsunxin@163.com

  • 中图分类号: TE349

Comprehensive Evaluation Method of Shale Oil Sweet Spot Based on Grey Correlation Analysis: A Case Study of Bonan Sag in Bohai Bay Basin

  • 摘要:

    国内页岩油以中国陆相沉积为主,地质条件复杂多变,且地质工程甜点评价要素多元,为页岩油甜点综合评价带来了困难。以渤海盆地渤南洼陷为例,基于灰色关联理论,筛选出了页岩厚度、总有机碳含量、镜质体反射率、孔隙度、热解游离烃含量、原油密度、原油黏度、地层压力和脆性指数等9个评价指标,分析了评价指标间的相关性,优化了各评价指标的权重,计算了综合评价指数,实现了页岩油甜点的综合性、定量化精准评价。分析结果显示:渤南洼陷页岩油综合评价指数高值主要分布于XYS9—Y182—Y187井区、Y283井区南部及L42井区周围,整体向南、向北综合评价指数逐渐降低,综合评价指数与单井产量具有较好的相关性,能够较好地匹配渤南洼陷页岩油单井产量;BYP5井综合评价指数自上而下整体减小,与示踪剂监测的产量贡献率趋势一致,两者具有较好的相关性。研究结果表明,页岩油水平井完井后,通过计算综合评价指数,可以及时、准确地评价水平段的甜点段,指导页岩油水平井压裂施工。

    Abstract:

    The geological conditions of shale oil in China, which is dominated by continental deposits, are complex and changeable, and the evaluation factors of geological engineering sweet spots are multiple, which brings difficulties to the comprehensive evaluation of shale oil sweet spots. With Bonan Sag in Bohai Bay Basin as an example, nine evaluation indexes were selected based on the grey correlation theory, including shale thickness, total organic carbon (TOC), vitrinite reflectance, porosity, pyrolysis free hydrocarbon content, crude oil density, crude oil viscosity, formation pressure, and brittleness index, and correlation analysis and weight optimization among these evaluation indexes were carried out to calculate a comprehensive evaluation index, so as to realize the comprehensive, quantitative, and accurate assessment of shale oil sweet spots. The results revealed that high values of the comprehensive evaluation index for shale oil in Bonan Sag were mainly concentrated in the XYS9, Y182, and Y187 well areas, as well as in the southern part of the Y283 well area and the surrounding vicinity of the L42 well area. The overall comprehensive evaluation index gradually decreased in the south and north directions. The comprehensive evaluation index had a good correlation with the single well production, which allowed for a good matching of shale oil production in Bonan Sag. The overall decline in the comprehensive evaluation index of the Well BYP5 from top to bottom, aligned with the trend of production contribution rates monitored by tracers, demonstrating a significant correlation between the two. The research indicate that after the completion of a shale oil horizontal well, by calculating the comprehensive evaluation index, the sweet spots of the horizontal section can be evaluated promptly and accurately to guide the fracturing measures of the shale oil horizontal well.

  • 川西气田海相雷口坡组气藏位于四川盆地川西坳陷龙门山构造带中段。2014年,PZ1井雷口坡组四段测试获得121×104 m3/d的高产工业气流后,又在YA1井、YS1井等井相继获得工业气流[1-3],证实了雷口坡组气藏具有良好的勘探开发前景。前期所钻探井均采用四开井身结构,能够有效封隔漏层、高压层等复杂地层,并保证了目的层专封专打[4]。但雷口坡组气藏储层条件复杂,要进一步增加优质储层钻遇长度、提高单井产量,需要整体采用大斜度定向井进行开发,这时四开井身结构就存在套管层次多、大尺寸井段较长、中完作业时间长和钻井成本高等问题,难以满足安全快速钻井的要求。

    针对四开井身结构存在的问题,为提高气藏开发效益,在分析工程地质特征、保证雷口坡组专层专打的基础上,根据地层三压力剖面和井壁稳定性研究结果优化了必封点位置,设计了超深大斜度井三开井身结构,研究形成了钻井配套技术,并在PZ4–2D井开展了先导试验,取得了显著效果,为后续川西气田海相气藏大斜度井钻井提供了技术支持。

    川西气田海相雷口坡组气藏,在前期勘探和评价阶段累计完钻13口井,均采用四开井身结构[5]。一开采用ϕ444.5 mm钻头钻至蓬莱镇组中部(井深约800 m),下入ϕ346.1 mm套管封隔第四系及蓬莱镇组中上部的不稳定、易漏、易坍塌地层,为二开可能钻遇的气层提供井口控制条件;二开采用ϕ320.7 mm钻头钻至须家河组三段上部(井深约3 800 m),下入ϕ282.6 mm+ϕ273.1 mm套管封须家河组五段易垮塌地层和须家河组四段裂缝气层;三开采用ϕ241.3 mm钻头钻至马鞍塘组一段(井深约5 900 m),下入ϕ193.7 mm尾管封隔马鞍塘组二段以浅高压地层;四开采用ϕ165.1 mm钻头钻至设计井深完钻,先下入ϕ139.7 mm尾管固井,再回接ϕ193.7 mm套管至井口。四开井身结构设计方案如图1所示。

    图  1  四开井身结构设计方案
    Figure  1.  The design scheme of four-stage casing program

    在前期勘探评价阶段,四开井身结构可以有效分隔不同压力体系和复杂地层,能够满足现场安全钻进要求,并实现地质目标。但随着勘探开发的不断深入,钻井提速和经济高效开发的要求越来越高,此时四开井身结构逐渐表现出局限和不足。分析认为,川西气田海相雷口坡组气藏四开井身结构主要存在以下问题:

    1)开次较多,各开次中完作业时间平均长达75 d,占钻井周期的26%以上。

    2)套管层次多,套管用量大,全井下入套管总质量约达780 t。

    3)二开采用大尺寸钻头(ϕ320.7 mm钻头),机械钻速较低。二开井段采用ϕ320.7 mm钻头钻进约3 000 m,与使用ϕ241.3 mm钻头相比,平均机械钻速低30%以上,岩屑等废弃物量增加60%以上。

    因此,为了提高开发该气藏的经济效益,有必要进一步优化井身结构,降低钻井成本。

    针对四开井身结构存在的开次多、大尺寸井段长和机械钻速低等问题,首先考虑减少开次,对必封点进行优化调整。为此,2017年在PZ113井和PZ115井开展了三开井身结构先导试验,将须家河组、小塘子组、马鞍塘组和雷口坡组置于同一裸眼段,实钻过程中在小塘子组钻遇高压裂缝性气层,钻井液密度最高达到2.25 kg/L,高密度钻井液条件下雷口坡组井漏、卡钻风险高,表明该方案难以兼顾高压和低压层位。因此,在保证雷口坡组专层专打的基础上,保留雷口坡组四段顶部的必封点,对目的层以上井段进行优化(见图2),具体思路是:1)优化合并必封点,减少开次,由四开改为三开,从而节省一个开次的中完作业时间;2)缩短大尺寸井眼长度[6-7],充分发挥ϕ241.3 mm钻头的提速优势,同时减少钻井液及废弃物用量;3)减少大尺寸套管下入长度和水泥浆用量。

    图  2  井身结构优化过程
    Figure  2.  Optimization process of casing program

    井身结构由四开优化为三开,主要会带来3个问题:1)原来的800 m长表层套管变为导管,能否满足下一开次的井控安全要求;2)技术套管下入位置由须家河组四段中部上移至须家河组五段下部,能否满足下一开次小塘子组高压气层的井控安全要求;3)裸眼段由2 100~2 300 m增长至3 300~4 000 m,能否保证长裸眼的井壁稳定性。

    分析川西气田海相雷口坡组气藏的工程地质特征,结合现有工程工艺情况,可知蓬莱镇组、遂宁组和沙溪庙组大多为微含气层,实际钻井液密度一般低于1.60 kg/L,基本能够压稳气层。因此,将导管长度设置为200 m左右,能够满足浅层气井控要求。一开表层套管下至须家河组五段下部,套管鞋处地层破裂压力由74.6 MPa降至61.7 MPa,但受上层ϕ273.1 mm套管抗内压强度(48.8 MPa)限制,两种井身结构条件下最大关井压力不变。二开井段钻遇须家河组、小塘子组、马鞍塘组和雷口坡组四段,通过封隔须家河组五段煤层和页岩,强化钻井液封堵和抑制性,能够保证井壁稳定。因此,三开井身结构基本可行。

    川西气田海相雷口坡组气藏以雷口坡组四段为主要目的层,埋深5 700~6 300 m,上储层段厚度为8~16 m,下储层段厚度为30~45 m。参考前期完钻的PZ1井和YA1井,对地层孔隙压力、破裂压力和坍塌压力进行预测[8],结果见表1

    表  1  钻遇地层压力预测结果
    Table  1.  Prediction results of the encountered formation pressure
    地层垂深/m压力系数预测值
    组或段孔隙压力系数破裂压力系数坍塌压力系数
    第四系 24
    侏罗系蓬莱镇组—遂宁组1 4071.00~1.202.30~3.50 0~1.00
    沙溪庙组2 0991.20~1.402.25~2.800.50~1.10
    千佛崖组—白田坝组2 2161.40~1.602.35~3.501.00~1.25
    三叠系须家河组五段3 0421.45~1.752.45~3.001.20~1.55
    须家河组四段—三段4 4991.45~1.752.45~3.001.20~1.55
    须家河组二段5 1121.35~1.602.25~3.001.20~1.42
    小塘子组—马鞍塘组二段5 6921.35~1.602.50~3.501.30~1.72
    马鞍塘组一段5 7391.25~1.352.30~3.501.25~1.57
    雷口坡组四段5 8891.10~1.202.20~2.701.10~1.45
    下载: 导出CSV 
    | 显示表格

    应用GMI地应力软件建立设计井的井壁稳定模型并进行了分析,结果表明,雷口坡组水平地应力方向比较一致,最大水平主应力方向为近东西向,方位角在74°~84°(平均为80°左右),坍塌压力系数在1.10~1.20;最小水平主应力方向为近南北向,平均方位角为170°左右,坍塌压力系数最高为1.45左右,沿最小水平主应力方向钻井的井眼失稳风险最大。

    根据雷口坡组气藏三压力剖面和井壁稳定性研究结果,认为陆相千佛崖组—小塘子组地层具备在同一裸眼段实施的可行性,据此将前期的3个必封点优化为2个必封点:设计必封点1位于须家河组五段中下部稳定地层,封隔须家河组五段页岩和主要的煤层;考虑马鞍塘组二段底部可能发生井眼失稳、马鞍塘组一段含页岩夹层等情况,设计必封点2位于进入雷口坡组四段顶部斜深5 m处,为专层开发雷口坡组四段储层提供有利的井筒条件。设计的必封点位置如图3所示。

    图  3  必封点设置示意
    Figure  3.  Schematic of the mandatory sealing points

    由内而外、自下而上逐层确定各开次钻头和套管的直径,尽量选择API标准尺寸。设计方案为:导管封隔上部易漏层及浅层水;表层套管封隔须家河组五段页岩和煤层,为二开井段钻井提供井控条件;二开进入雷口坡组四段顶部斜深3~5 m,技术套管封隔马鞍塘组及以浅地层,保障目的层专封专打;三开钻至设计井深完钻。设计的三开井身结构见表2

    表  2  设计的三开井身结构
    Table  2.  The designed three-stage casing program
    开钻次序钻头程序 套管程序备注
    钻头直径/mm完钻深度/m 套管外径/mm下入井段/m
    导管444.5 202 365.10~200 导管
    1333.42 502 273.10~2 500表层套管
    2241.35 848 193.72 300~5 846 油层套管,悬挂尾管固井
    0~2 300回接油层套管至井口固井
    3165.16 501 裸眼完井
    下载: 导出CSV 
    | 显示表格

    川西气田海相超深大斜度井应用三开井身结构时,钻进施工时存在以下技术难点:须家河组—小塘子组地层可钻性级值超过7级,部分石英含量高的井段可钻性级值大于9级[9-10],造斜点位于须家河组二段地层,需要在钻井液密度高于2.0 kg/L条件下斜穿须家河组—小塘子组地层1 200 m左右,定向钻井提速提效难度大;二开裸眼段长达3 300~4 000 m,纵向上压力体系复杂,须家河组二段低压易漏,小塘子组存在高压裂缝气层,须家河组页岩和煤层易垮塌;局部区域雷口坡组四段顶部地层破碎,易发生井壁失稳和掉块卡钻。针对这些问题,研究了钻井配套技术。

    针对须家河组二段—小塘子组研磨性强和雷口坡组地层裂缝发育的特点,提出分段–多增大斜度井井眼轨道设计思路,即将造斜段分解为多个增斜段,根据地层可钻性设计每小段的造斜率。造斜点设置在垂深5 000 m处,控制须家河组二段造斜率为13°/100m、小塘子组造斜率为2°/100m,尽量利用复合钻井自然增斜趋势钻穿小塘子组;马鞍塘组地层可钻性相对较好,设计为增斜段,造斜率约16°/100m。须家河组二段—小塘子组定向钻井优选六刀翼或七刀翼PDC钻头,该钻头采用ϕ13.0 mm 切削齿,配备辅助切削齿,具有保径能力强、抗研磨性强、可控制切削深度等特性[11]。基于使用寿命匹配原则,优选7头低速大扭矩等壁厚螺杆钻具,以提高钻头破岩扭矩,降低硬地层钻头转速,保障钻头平稳工作,避免切削齿过早磨损。

    由于雷口坡组四段地层破碎,为减少滑动钻井进尺,将造斜率控制在11°/100m左右,以保障大斜度井段钻井安全,同时利于调整目的层垂深。为确保裸眼中完井管柱的顺利下入,设计采用旋转导向定向钻井,优选六刀翼ϕ13.0 mm齿PDC钻头,配合耐温150 ℃ AutoTrak旋转导向工具,保证井眼轨迹平滑,确保准确中靶。

    针对二开长裸眼井段的井眼失稳问题,以“强化抑制、适度封堵、合理密度”为原则,构建了复合盐强抑制聚磺防塌钻井液体系[12]。该钻井液的技术核心包括抑制、封堵和润滑3个单元。抑制单元由无机钾盐、有机钾盐和聚胺组成,以降低滤液活度,延长井壁坍塌周期;封堵单元由成膜封堵剂、微米–纳米封堵剂和可变形封堵剂组成,以降低滤失量,减小压力传递及毛细管效应,封堵地层孔隙和微裂缝;润滑单元由抗温抗盐高效液体润滑剂、固体润滑剂组成,以降低钻井摩阻,解决大斜度井段托压问题。通过室内试验确定的钻井液配方为:上部井浆+8.0%氯化钾+3.0%甲酸钾+0.4%~0.6%生石灰+0.5%~1.0%聚胺+0.6%~0.8%聚阴离子纤维素+2.0%~4.0%磺化酚醛树脂+2.0%~4.0%无铬磺化褐煤+0.1%~0.3%两性离子聚合物包被剂+纳米封堵剂+成膜封堵剂+2.0%~3.0%超细碳酸钙+井壁封固剂+1.0%~2.0%聚合物抗温抗盐降滤失剂+4.0%~6.0%抗温抗饱和盐润滑剂+重晶石粉。钻井液密度1.78~1.99 kg/L,漏斗黏度56~70 s、润滑系数0.12,控制K+浓度>35 000 mg/L,实钻中定时定量加入处理剂,确保钻井液性能优良。

    针对三开钻进时雷口坡组四段地层破碎、掉块卡钻风险高的问题,优选复合型封堵剂、成膜封堵剂和纳米封堵剂,配制了强封堵高酸溶聚磺钻井液,以降低斜穿破碎地层时的卡钻风险,并应用屏蔽暂堵技术保护储层[13-14]。钻井液配方为:上部井浆+3%~5%磺化酚醛树脂+2%~4%无铬磺化褐煤+2%~3%抗温抗饱和盐润滑剂+3%~5%超细碳酸钙+成膜封堵剂+井壁封固剂+复合型封堵剂+聚合物抗温抗盐降滤失剂+减磨剂类润滑剂+石灰石。钻井液密度1.48~1.50 kg/L,漏斗黏度53~63 s、高温高压滤失量6~10 mL,润滑系数<0.11。

    PZ4-2D井为川西气田一口海相气藏超深大斜度井,设计采用三开井身结构,采用了分层–多增大斜度井井眼轨道设计方法,造斜点选择在须家河组二段(井深5 000 m),可钻性较好地层的造斜率为(8°~14°)/100m,难钻地层的造斜率控制在2°/100m左右。该井井眼轨道设计数据见表3

    表  3  PZ4-2D井井眼轨道设计结果
    Table  3.  Designed borehole trajectory of Well PZ4-2D
    开次井深/m井斜角/(°)方位角/(°)垂深/m北南位移/m东西位移/m水平位移/m全角变化率/((°)·(100 m)–1关键点
    1 00 0 0 00 0 0
    2 500.000 0 0 00 0 0
    25 000.000 0 5 000.00 00 0 0 造斜点
    5 113.2915.00138.305 112.00 −11.01 9.81 14.7513.24须家河组二段底界
    5 589.5825.00138.305 559.00−132.48118.04177.44 2.10小塘子组底界
    5 761.1152.00138.305 692.00−211.47188.42283.2315.74
    5 844.1459.00138.305 739.00−262.53233.91351.62 8.43雷口坡组四段顶界
    35 864.1459.00138.305 749.30−275.33245.31368.760
    6 013.0778.34139.265 803.22−379.24336.24506.8313.00
    6 026.9878.34139.265 806.03−389.56345.13520.450
    6 042.7479.91140.005 809.00−401.35355.15535.9211.00A靶点
    6 470.9979.91140.005 884.00−724.35626.15957.470 B靶点
    6 500.9979.91140.005 889.25−746.98645.13987.000
    下载: 导出CSV 
    | 显示表格

    PZ4-2D井实钻井身结构见表4。为有效分隔各复杂地层,确保钻达地质目标,实钻各开次的必封点与设计结果基本一致:一开设计钻至须家河组五段中下部,表层套管封隔页岩夹层和煤层,但实际钻进中在蓬莱镇组—沙溪庙组钻遇微含气层,未在须家河组五段钻遇气层,钻井液密度低于1.70 kg/L,具备将须家河组五段全部揭穿的有利地质条件,因此将一开加深至须四段顶部,表层套管封隔须家河组五段,并适当缩短了二开井段长度,降低了二开钻井难度;二开井段应用复合盐强抑制聚磺防塌钻井液,解决了长裸眼长周期井壁稳定问题;三开井段应用强封堵高酸溶聚磺钻井液,实钻过程中起下钻摩阻60~120 kN,返出岩屑大小均匀无掉块,解决了破碎地层井壁稳定和大斜度井段润滑防卡问题。

    表  4  PZ4-2D井实钻井身结构
    Table  4.  Casing program of Well PZ4-2D
    开钻次序钻头程序套管程序备注
    钻头直径/mm完钻深度/m套管外径/mm下入井段/m
    导管444.5 200.50365.10~198.50  表层套管,封地表水及疏松易漏地层
    1333.43 051.00273.10~3 049.00 技术套管,封须家河组五段
    2241.35 883.00193.72 839.46~5 881.00  油层套管,进入雷口坡组四段顶部斜深5 m,悬挂尾管固井
    0~2 839.46 回接油层套管至井口固井
    3165.1 裸眼完井
    下载: 导出CSV 
    | 显示表格

    该井实钻中,采用ϕ16.0 mm齿PDC钻头+ϕ185.0 mm1.5°单弯螺杆钻具造斜,进入小塘子组后,由于地层研磨性增强,优选耐磨性更强的六刀翼ϕ13.0 mm齿PDC钻头稳斜钻进;二开5 018~5 883 m井段,使用7只PDC钻头,其中复合钻井比例达到80%以上,平均机械钻速2.22 m/h,与前期直井段相比,钻速提高74.8%;三开5 886.00~6 573.77 m井段,使用2只PDC钻头,平均机械钻速4.61 m/h,应用抗温150 ℃旋转导向工具精确控制在储层段穿行,井斜角从58.0°增至79.9°,然后降至70.5°,实现准确中靶。

    PZ4-2D井在采用优化后的三开井身结构的基础上,又集成应用了高效PDC钻头+等壁厚螺杆钻具、复合盐强抑制聚磺防塌钻井液和旋转导向轨迹控制等多项技术,攻克了长裸眼复杂地层井壁失稳、破碎地层定向钻井等技术难题,完钻井深6 573.77 m、平均机械钻速3.53 m/h,钻井周期199.3 d。与前期直井相比,在井深增加239 m的情况下,机械钻速提高40.3%、钻井周期缩短22.7%,而且确保了钻井井控安全,全井零井下故障,首次实现了200 d内完钻一口川西气田海相气藏超深大斜度井的目标。

    1)在分析川西气田海相雷口坡组气藏工程地质特征的基础上,提出了保证目的层专封专打、减少开次的井身结构优化思路,确定了必封点的合理位置,优化形成了三开井身结构设计方案,满足了川西气田海相气藏经济高效开发的需求。

    2)为提高坚硬难钻地层的造斜效率,提出了分段–多增大斜度井井眼轨道设计方法,基于地层岩性特征和可钻性级值优化了造斜点和分段造斜率,优选了高抗磨定向钻头和配套动力钻具。

    3)复合盐强抑制聚磺防塌钻井液能够有效抑制页岩、泥岩地层的水化坍塌,具有良好的抗高温和润滑性能;强封堵高酸溶聚磺钻井液能够强化井筒,保证破碎地层斜井段安全钻井。

    4)PZ4-2D井的成功试验表明,三开井身结构设计基本科学、合理,钻井配套技术安全有效,在同类气藏和同类井钻井中具有推广应用价值。

  • 图  1   渤南洼陷基本地质情况

    Figure  1.   Basic geological condition of Bonan Sag

    图  2   渤南洼陷页岩油评价指标与日产油量的相关性

    Figure  2.   Correlation between shale oil evaluation indexes and daily production of shale oil in Bonan Sag

    图  3   渤南洼陷页岩油综合评价指数平面分布

    Figure  3.   Plane distribution of comprehensive evaluation indexes of shale oil in Bonan Sag

    图  4   渤南洼陷页岩油综合评价指数与日油产量的相关性

    Figure  4.   Correlation of comprehensive evaluation indexes and daily production of shale oil in Bonan Sag

    图  5   BYP5井页岩油甜点段综合评价结果

    Figure  5.   Comprehensive evaluation results of shale oil sweet spots in Well BYP5

    图  6   BYP5井页岩油甜点段综合评价指数与产量贡献率的相关性

    Figure  6.   Correlation analysis between the comprehensive evaluation index of shale oil sweet spots and production contribution rate in Well BYP5

    表  1   渤南洼陷页岩油井的评价指标

    Table  1   Evaluation indexes of shale oil wells in Bonan Sag

    井号日产油
    量/t
    含油性储集性可动性可压性
    页岩厚度/m总有机碳
    含量,%
    镜质体反
    射率,%
    孔隙度,%热解游离烃
    含量/(mg·g−1
    原油密度/
    (kg·L−1
    原油黏度/
    (mPa·s)
    地层压力/
    MPa
    脆性指数,%
    Y187156.064.10.906.00.8812.468
    Y182140.050.63.800.906.12.780.8815.258.873
    L4279.932.98.580.781.66.890.8728.445.269
    L1943.526.01.810.671.01.760.7338.244.266
    Y18641.544.22.330.922.52.850.8812.747.175
    XYS938.580.23.130.866.65.130.878.460.058
    BS812.215.93.20.920.739.762
    L209.210.24.630.722.23.920.93208.037.0
    Y2837.659.51.750.856.32.610.9014.556.963
    Y572.625.90.651.90.93192.066
    BYP12.50.851.60.9158.648.970
    L672.123.03.040.815.83.580.9147.060
    BYP21.10.661.20.93476.064
    L690.926.03.440.824.71.150.8966
    L160.139.02.190.681.72.520.9342.0
    Y9026.60.621.72.96
    L52020.00.761.5
    Y28900.921.10
    下载: 导出CSV

    表  2   渤南洼陷页岩油井评价指标归一化处理结果

    Table  2   Normalization of evaluation indexes of shale oil wells in Bonan Sag

    井号日产油含油性储集性可动性可压性
    页岩厚度总有机碳含量镜质体反射率孔隙度热解游离烃含量原油密度原油黏度地层压力脆性指数
    Y1871.000.770.930.890.240.970.59
    Y1820.900.580.100.930.910.290.230.970.950.88
    L420.510.321.000.530.111.000.300.940.360.65
    L190.280.230.010.1700.111.000.920.310.47
    Y1860.270.490.081.000.270.300.270.970.441.00
    XYS90.251.000.200.801.000.700.320.981.000
    BS80.080.080.390.051.000.120.24
    L200.060.420.330.210.490.560
    Y2830.050.7000.770.950.260.150.970.860.29
    Y570.020.220.100.1600.600.47
    BYP10.020.770.110.120.880.520.71
    L670.010.180.190.630.860.430.100.430.12
    BYP20.010.130.04000.35
    L690.010.230.250.670.660.010.190.47
    L1600.410.060.200.130.250.020.91
    Y900.2300.130.32
    L5200.140.470.09
    Y28901.000
    下载: 导出CSV

    表  3   渤南洼陷页岩油井评价指标相关度及权重

    Table  3   Correlation and weight of evaluation indexes of shale oil wells in Bonan Sag

    参数页岩厚度总有机碳含量镜质体反射率孔隙度热解游离烃含量原油密度原油黏度地层压力脆性指数
    相关度校正前0.660.700.660.690.610.800.510.720.62
    校正后0.660.700.660.690.230.800.510.720.62
    权重0.120.130.120.120.040.140.090.130.11
    下载: 导出CSV

    表  4   渤南洼陷页岩油井的综合评价指数

    Table  4   Comprehensive evaluation indexes of shale oil wells in Bonan Sag

    井号综合评价指数井号综合评价指数
    Y1870.47Y570.16
    Y1820.61BYP10.32
    L420.52L670.33
    L190.39BYP20.05
    Y1860.55L690.28
    XYS90.69L160.17
    BS80.19Y90.04
    L200.20L520.08
    Y2830.60Y2890.11
    下载: 导出CSV
  • [1] 李阳,赵清民,吕琦,等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发,2022,49(5):955–964.

    LI Yang, ZHAO Qingmin, LYU Qi, et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development, 2022, 49(5): 955–964.

    [2] 包书景, 葛明娜, 徐兴友, 等. 我国陆相页岩油勘探开发进展与发展建议[J/OL]. 中国地质: 1–14. [2023-05-14]. http://kns.cnki.net/kcms/detail/11.1167.P.20230510.1545.006.html.

    BAO Shujing, GE Mingna, XU Xingyou, et al. Progress and suggestions on exploration and development of continental shale oil in China[J/OL]. Geology in China: 1–14. [2023-05-14]. http://kns.cnki.net/kcms/detail/11.1167.P.20230510.1545.006.html.

    [3] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研[J]. 石油钻探技术,2020,48(3):63–69.

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69.

    [4] 郭秋麟,白雪峰,何文军,等. 页岩油资源评价方法、参数标准及典型评价实例[J]. 中国石油勘探,2022,27(5):27–41.

    GUO Qiulin, BAI Xuefeng, HE Wenjun, et al. Shale oil resource assessment methods, parameter standards and typical case studies[J]. China Petroleum Exploration, 2022, 27(5): 27–41.

    [5] 宋明水,刘惠民,王勇,等. 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发,2020,47(2):225–235.

    SONG Mingshui, LIU Huimin, WANG Yong, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(2): 225–235.

    [6] 朱德顺. 东营、沾化凹陷页岩油有利目标综合评价方法[J]. 地质论评, 2019, 65(增刊1): 205−206.

    ZHU Deshun. Comprehensive evaluation method for favorable targets of shale oil in Dongying and Zhanhua Sag[J]. Geological Review, 2019, 65 (supplement1): 205−206.

    [7] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业,2021,41(1):59–71.

    HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59–71.

    [8] 李映艳,陈轩,高阳,等. 井震结合分析页岩油“甜点”沉积特征及分布:以吉木萨尔凹陷芦草沟组“下甜点”为例[J]. 断块油气田,2023,30(2):186–195.

    LI Yingyan, CHEN Xuan, GAO Yang, et al. Sedimentary morphologys and distributions of shale oil “sweet spot” by the data of well to seismic analysis: a case study of the lower sweet pot in Lucaogou Formation of Jimsar Sag[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 186–195.

    [9] 熊雄,肖佃师,雷祥辉,等. 吉木萨尔凹陷芦草沟组页岩油录井响应及“甜点”快速评价技术[J]. 特种油气藏,2023,30(4):35–43.

    XIONG Xiong, XIAO Dianshi, LEI Xianghui, et al. Response of well logging and “sweet spot” rapid evaluation technology for shale oil in the Lucaogou Formation of Jimsar Sag[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 35–43.

    [10] 黄天镜,刘钰洋,吴英强,等. 基于层次分析法的致密砂岩双甜点评价方法[J]. 科学技术与工程,2021,21(5):1773–1782.

    HUANG Tianjing, LIU Yuyang, WU Yingqiang, et al. Evaluation method of comprehensive sweet spots in tight sandstone reservoir based on analytical hierarchy process[J]. Science Technology and Engineering, 2021, 21(5): 1773–1782.

    [11] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Tecniques, 2019, 47(5): 1–10.

    [12] 李志明,钱门辉,黎茂稳,等. 盐间页岩油形成有利条件与地质甜点评价关键参数:以潜江凹陷潜江组潜34-10韵律为例[J]. 石油实验地质,2020,42(2):513–523.

    LI Zhiming, QIAN Menhui1, LI Maowen, et al. Favorable conditions of inter-salt shale oil formation and key parameters for geological sweet spots evaluation: a case study of Eq34-10 rhythm of Qianjiang Formation in Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 513–523.

    [13] 赵贤正, 周立宏, 蒲秀刚, 等. 歧口凹陷歧北次凹沙河街组三段页岩油地质特征与勘探突破[J]. 石油学报, 2020, 41(6): 643−657.

    ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics and exploration breakthrough of shale oil in Member 3 of Shahejie Formation of Qibei Subsag, Qikou Sag[J]. Acta Petrolei Sinica, 2020, 41(6): 643−657.

    [14] 周立宏,赵贤正,柴公权,等. 陆相页岩油效益勘探开发关键技术与工程实践:以渤海湾盆地沧东凹陷古近系孔二段为例[J]. 石油勘探与开发,2020,47(5):1059–1066.

    ZHOU Lihong, ZHAO Xianzheng, CHAI Gongquan, et al. Key exploration & development technologies and engineering practice of continental shale oil: a case study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(5): 1059–1066.

    [15] 魏永波,李俊乾,卢双舫,等. 湖相页岩油甜点综合评价方法及应用:以饶阳凹陷沙一下亚段页岩油为例[J]. 中国矿业大学学报,2021,50(5):813–824.

    WEI Yongbo, LI Junqian, LU Shuangfang, et al. Comprehensive evaluation method of sweet spot zone in lacustrine shale oil reservoir and its application: a case study of shale oil in lower 1st member of the Shahejie Formation in the Raoyang Sag[J]. Journal of China University of Mining & Technology, 2021, 50(5): 813–824.

    [16] 张继伟. 基于主成分分析的页岩油有利区评价: 以仪陇—平昌地区大安寨段为例[J]. 断块油气田, 2021, 28(1): 28−32.

    ZHANG Jiwei. Evaluation of favorable areas of shale oil based on principal component analysis: taking Daanzhai member of Yilong-Pingchang Area as an example[J]. Fault-Block Oil & Gas Field, 201, 28(1): 28−32.

    [17] 苟启洋,徐尚,郝芳,等. 基于灰色关联的页岩储层含气性综合评价因子及应用:以四川盆地焦石坝区块为例[J]. 天然气地球科学,2019,30(7):1045–1052.

    GOU Qiyang, XU Shang, HAO Fang, et al. A comprehensive evaluation index of gas-bearing property of shale reservoirs based on grey relation and its application: case study of Jiaoshiba Area, Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(7): 1045–1052.

    [18] 彭丽,陆永潮,彭鹏,等. 渤海湾盆地渤南洼陷沙三下亚段泥页岩非均质性特征及演化模式:以罗69井为例[J]. 石油与天然气地质,2017,38(2):219–229.

    PENG Li, LU Yongchao, PENG Peng, et al. Heterogeneity and evolution model of the lower Shahejie Member 3 mud-shale in the Bonan Subsag, Bohai Bay Basin: an example from Well Luo 69[J]. Oil & Gas Geology, 2017, 38(2): 219–229.

    [19] 刘鹏,刘加旭,李应美,等. 渤海湾盆地济阳坳陷渤南洼陷沙河街组三段页岩油-常规油相关分布成因机理与分布模式[J]. 中南大学学报(自然科学版),2022,53(9):3434–3448.

    LIU Peng, LIU Jiaxu, LI Yingmei, et al. Genetic mechanism and distribution model of correlation between shale oil and conventional oil about the third member of Shahejie Formation in Bonan Sag, Jiyang Depression, Bohai Bay Basin[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3434–3448.

    [20] 李志鹏,杨勇,杜玉山,等. 渤南洼陷“济阳”夹层型页岩油评价及水平井一体化设计[J]. 中国石油大学学报(自然科学版),2023,47(2):24–35.

    LI Zhipeng, YANG Yong, DU Yushan, et al. Integrated design of horizontal wells and evaluation in Jiyang interlayer shale oil of Bonan Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(2): 24–35.

    [21] 王雨菡,丁伟铭,刘璇,等. 渤海湾盆地渤南洼陷沙河街组三段下亚段岩相特征及有机质富集成因[J]. 石油与天然气地质,2019,40(5):1106–1114.

    WANG Yuhan, DING Weiming, LIU Xuan, et al. Lithofacies and causal mechanism of organic matter enrichment in the lower submember of the 3rd member of Shahejie Formation, Bonan Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(5): 1106–1114.

    [22] 彭绪涛,王仪,贾程,等. 基于麻雀搜索算法与BP 神经网络的压裂效果预测[J]. 石油钻采工艺,2022,44(4):522–528.

    PENG Xutao, WANG Yi, JIA Cheng, et al. Fracturing effect prediction based on sparrow search algorithm and BP neural network[J]. Oil Drilling & Production Technology, 2022, 44(4): 522–528.

    [23] 左代容. 灰色关联分析法在剩余可采储量品位评价中的应用[J]. 断块油气田,2010,17(3):354–356.

    ZUO Dairong. Application of gray correlation analysis method in quality evaluation of remaining recoverable reserves[J]. Fault-Block Oil & Gas Field, 2010, 17(3): 354–356.

    [24] 周志杰, 张小莉, 杨振, 等. 基于优化熵权的储层非均质性定量表征新方法研究: 以鄂尔多斯盆地志丹油区F井区长611储层为例[J/OL]. 地球物理学进展: 1−11. [2023-05-14]. http://kns.cnki.net/kcms/detail/11.2982.P.20221228.1416.032.html.

    ZHOU Zhijie, ZHANG Xiaoli, YANG Zhen, et al. A new quantitative characterization method of reservoir heterogeneity based on optimized entropy weight: a case study of Chang 611 reservoir in Well F of Zhidan oil area, Ordos Basin[J/OL]. Progress in Geophysics: 1−11. [2023-05-14]. http://kns.cnki.net/kcms/detail/11.2982.P.20221228.1416.032.html.

    [25] 赵迪斐,郭英海,朱炎铭,等. 深层海相页岩储层精准评价与开发选层的评价体系问题评述[J]. 非常规油气,2022,9(2):1–7.

    ZHAO Difei, GUO Yinghai, Zhu Yanming, et al. Comments on the evaluation system of accurate evaluation and selection of deep marine shale reservoirs[J]. Unconventional Oil & Gas, 2022, 9(2): 1–7.

    [26] 赵迪斐,张家明,郭英海,等. 储层精细评价潜在关键关联指标:页岩沉积构造及其量化问题研究评述[J]. 非常规油气,2023,10(1):11–20.

    ZHAO Difei, ZHANG Jiaming, GUO Yinghai, et al. Potential key correlation index for fine reservoir evaluation: Review on shale sedimentary structure and its quantification[J]. Unconventional Oil & Gas, 2023, 10(1): 11–20.

  • 期刊类型引用(5)

    1. 李荷婷,代俊清,李真祥. 四川盆地及周缘超深/特深探井酸压改造的实践与认识. 石油钻探技术. 2024(02): 202-210 . 本站查看
    2. 李延生,王建新,张军,李明,张刚. 延长油田转向酸油层深部解堵室内评价. 当代化工. 2024(09): 2119-2123 . 百度学术
    3. 李隆新,王梦雨,胡勇,周源,周鸿,宁飞,冉林,王冠群,李炜,龙威. 缝洞型碳酸盐岩地下储气库高速注采渗流特征及库容动用机理. 天然气工业. 2023(10): 73-82 . 百度学术
    4. 徐诗雨,夏茂龙,祝怡,李天军,林怡. 开江—梁平海槽演化阶段与构造沉积特征. 断块油气田. 2023(06): 963-974 . 百度学术
    5. 冯新根,方俊伟,方裕燕,潘丽娟. 抗高温隔离膜缓速酸液体系研制与性能评价. 石油钻探技术. 2023(06): 99-105 . 本站查看

    其他类型引用(0)

图(6)  /  表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  39
  • PDF下载量:  52
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-27
  • 网络出版日期:  2023-10-11
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回