Experimental Study of Proppant Transport in Flat Fracture Based on PIV/PTV
-
摘要:
为了解水力压裂过程中水力裂缝内支撑剂的铺置规律,基于平板裂缝开展了支撑剂输送试验,分析了泵注排量、压裂液黏度、注入位置、支撑剂类型对支撑剂铺置过程的影响;运用PIV/PTV技术,测试了压裂液–支撑剂两相运动速度,从颗粒运动角度分析了不同因素对最终砂堤形态的影响。试验发现:平板单缝内支撑剂铺置存在“裂缝前端先堆积至平衡高度,再稳定向后端铺置”和“砂堤整体纵向增长,稳定向后端铺置”2种典型模式,2种模式可以在泵注的不同阶段出现并转换; 砂堤不同位置形态主控因素存在差异,注入位置与排量主要控制前缘形态,黏度与排量主要控制中部形态,黏度主要控制后缘形态;在裂缝远端,支撑剂沉降存在“回流式”和“直接式”2种模式,前者受涡流控制,后者则仅依靠重力沉降;现场施工时可考虑“定向射孔+大排量中高黏70/140目石英砂(主体支撑剂)+40/70目陶粒架桥+大排量中高黏70/140目石英砂长距离输送+排量尾追40/70目陶粒”,兼顾缝长方向远距离铺置和近井地带裂缝与井筒的高连通性。平板裂缝内支撑剂运移与铺置规律试验结果可以为页岩储层压裂主裂缝内支撑剂高效铺置及储层改造工艺参数优化提供参考。
Abstract:In order to study the placement behaviors of proppants in fractures during hydraulic fracturing, proppant transport tests were carried out based on flat fractures, and the influence of pump injection displacement, fracturing fluid viscosity, injection position, and proppant type on the placement process of proppants was studied. By using particle image velocimetry (PIV)/ particle track velocimetry (PTV) technology, a two-phase flow velocity test of fracturing fluid–proppant was carried out, and the influence of different factors on final sand embankment shape was analyzed from the perspective of particle motion. The test results showed that: ① there were two typical modes of proppant placement in single flat fracture. The first one was that the front end of the fracture accumulated to the equilibrium height first, and the push-type back end was placed, while the second indicated the mode of overall longitudinal growth of sand embankments. The two modes could appear and transform at different stages of pumping. ② There were different controlling factors in the shape of sand embankments at different positions. The injection position and displacement primarily controlled the leading edge shape; the viscosity and displacement mainly controlled the middle shape, and the viscosity mainly controlled the trailing edge shape. ③ At the distal end of the fracture, there were two modes of proppant settlement, namely backflow type and direct type. The former was controlled by eddy current, while the latter only depended on gravity settlement. ④ Directional perforation + 70/140-mesh quartz sand with large displacement and medium-high viscosity (main proppant) + 40/70-mesh ceramsite bridging + long-distance transportation of 70/140-mesh quartz sand with large displacement and medium-high viscosity + 40/70-mesh ceramsite of displacement tail chasing could be considered in field construction, which took into account the long-distance placement in direction of fracture length and the high connectivity between fractures and wellbores in the near-wellbore area. It was concluded that the experimental study on the transport and placement of proppants in the flat fracture can provide a reference for the efficient placement of proppants in the main fracture of shale reservoir fracturing and the optimization of reservoir stimulation process parameters.
-
随着油田数字化技术不断发展,国内各油田先后开展了第四代分层注水技术攻关,实现了井下分层流量自动测调及远程监控[1-2]。大庆、华北和吉林等油田[2-3]开展了电缆通信数字分注技术研究,但由于电缆捆置于油管外部,下入作业过程较为复杂,电缆易磕碰损坏,井下长期密封性较差。长庆、胜利和冀东等油田应用无线通信数字式分注技术,可以自动调节井下配水器周期,但由于采用井下电池供电,受电池电量限制,回传测试数据量相对较少[4-8]。
针对上述技术问题,笔者结合柔性复合管连续性及耐腐蚀性[9-14],将电缆设计于柔性复合管内,研发了智能配水器、过电缆封隔器等关键工具,形成了柔性复合管预置电缆数字式分注技术,实现了全井段电缆通信与控制及分层流量实时自动测调、自动监控,解决了电缆保护与测试数据少的问题。
1. 工艺设计
柔性复合管预置电缆数字式分注管柱主要包括预置电缆柔性复合管、柔性复合管转换接头、智能配水器、油管、过电缆封隔器和井下附件等,采用过电缆封隔器将储层分开,智能配水器中集成设计流量计、电机和水嘴等自动化控制机构,完成分层流量自动测试、自动调节及远程实时监控。
1.1 预置电缆柔性复合管设计
预置电缆柔性复合管采用多层结构设计,包括内衬层、增强层、功能层、拉伸层和保护层(见图1)。内衬层为聚乙烯材质,是井内流体流动的主通道;增强层为承载层,采用聚乙烯、玻璃纤维复合材料带缠绕热熔设计,以抵抗外压和内压;拉伸层为凯夫拉纤维,提供管柱拉伸强度;功能层为通信电缆层,将电缆预置于管体内,建立实时通信通道;保护层为聚乙烯材质,其许用应变为 7.7%[15-17],可确保管柱在运输、井筒下入等作业过程中无损坏。
1.2 智能配水器
智能配水器是井下自动控制的核心工具,主要包括上接头、验封短节、控制模块、过流通道、流量计、电机、水嘴和下接头等(见图2)。智能配水器通过流量计测试分层流量,将测试结果与控制模块目标流量对比,当误差大于5%时,电机调节水嘴开度改变分层流量,实现分层动态数据监测、分层流量自动调节,使分层流量达到配注要求。
1.3 过电缆封隔器
过电缆封隔器兼具封隔地层与提供井下电缆环空通道的功能,主要包括上接头、解封机构、洗井机构、中心管、坐封胶筒、坐封机构和下接头等(见图3),管柱由多支过电缆封隔器、智能配水器连接组成,油管内打压后,封隔器胶筒坐封,封隔不同注水层段,实现不同层段注水。电缆由上接头穿入封隔器本体,穿越胶筒后,由洗井通道通过至下部坐封机构外部,最后由下接头穿出。此过程中,采用单一电缆完整穿越,密封可靠性高。
1.4 柔性复合管转换接头
柔性复合管转接头是连接柔性复合管和智能配水器的关键工具,由于柔性复合管为连续管体,不适用于丝扣连接,因此采用插接式销钉固定,使管柱机械连接、电控连接双接通,结构密封均采用两级胶圈密封,提高密封性(见图4)。柔性复合管转换接头主要包括预置电缆柔性复合管、活动接头、插头、滑环插座、防松螺钉、滑环座和穿线管等(见图5)。其中,柔性复合管的信号线与单芯插头相连,插头与滑环接插座接触;配水器信号线通过胶套导线穿过穿线管与滑环插座相连。
2. 室内测试
2.1 预置电缆柔性复合管力学性能分析
预置电缆柔性复合管需满足封隔器坐封、洗井等工艺需求,力学模拟分析表明,当管件开始爆破失效时,纤维增强层先达到破坏条件,内衬层和外保护层的最大应变尚未达到许用应变,因此,主要通过分析增强层的应力来评价其抗压性能。
2.1.1 增强层性能测试
根据横向和纵向的应力响应设计标准[15],增强层设计缠绕层为8层,开展室内测试分析不同缠绕层纵向与横向应力变化规律,纵向应力随缠绕层数增加而降低,横向应力随缠绕层数增加而增大(见图6、图7)。
2.1.2 模拟分析对比
采用有限元模拟分析爆破压力,结果如图8所示。假设预置电缆柔性复合管材料为线弹性,模拟结果远大于室内测试结果,误差最大为22.5%,模拟结果与测试值差距较大,无法表征材料的真实特性;引入材料的非线性,按照管材真实应力应变曲线进行模拟,模拟结果和测试结果具有良好的一致性,最大误差不超过6.5%,因此,预置电缆柔性复合管材料具有非线性特征。此外,随玻纤增强柔性管缠绕层数的增加,爆破压力呈线性增大,需要根据管内流体输送压力确定玻纤增强柔性管增强层层数。
2.1.3 室内测试分析
选取1.00 m长的预置电缆柔性复合管若干,分别进行静水压强度、爆破强度、抗拉伸等性能测试评价[18-20]。静水压强度测试结果表明,在50 MPa压力下稳压24 h,预置电缆柔性复合管无破裂、无渗漏,管体压降2%;爆破强度测试参照标准《流体输送用热塑性塑料管材耐内压试验方法》(GB/T 6111—2003)进行[18],测试结果表明,爆破压力为96 MPa;拉伸强度测试结果表明,拉断力为294 kN;抗外压强度测试结果表明,管柱变形外压为29 MPa。总体而言,预置电缆柔性复合管性能指标均满足井下注水管柱的设计要求,同时可保证分注井封隔器坐封压力在12~15 MPa,最大抗外压力能达到25 MPa。
2.2 智能配水器
为保证在井下高压环境中长期正常工作,监测分层流量、压力等动态数据,智能配水器需满足静压差25 MPa条件下密封可靠,流量测试误差小于2%,压力测试误差小于3%等现场使用要求。
1)静压测试。将智能配水器下接头连接堵头,上接头连接测试管线,放置于高压测试仓内,智能配水器过流通道正向打压25 MPa,智能配水器密封高压测试仓环空反向打压25 MPa,30 min压降均小于0.2 MPa。
2)流量测试。将智能配水器与流量测试平台连接,流量测试范围5~50 m3/d,测试间隔5 m3/d,将智能配水器测试流量与标准值对比,测试误差小于1.8%(见图9)。
3)压力测试。将智能配水器与压力测试平台连接,压力测试范围0~60 MPa,测试间隔5 MPa,采用正程升压、反程降压测试,将智能配水器测试压力与标准值对比,测试误差小于2%(见图10)。
总体而言,智能配水器满足静压差25 MPa下密封,流量测试误差小于2%,压力测试误差小于3%等现场应用要求。
3. 现场试验
为进一步分析井下柔性复合管预置电缆数字式分注技术的可靠性,验证地面与井下双向通信、验封与分层流量自动测调等方面的功能,在长庆油田Q93-4井、Q91-8井、Q65-6井和Q65-4井等4口井开展了现场试验,最长应用时间超过3年,最大应用井深1 859 m,当管内压力为20 MPa时全管段最大伸长2.40 m,各项功能均正常,可实现注水井各注水层压力与流量变化的有效监测。通过分层流量井下自动测调,分层水量误差均在10%以内,注水井分注合格率长期保持在100%,提高了分注的有效性。
表 1 现场试验井情况统计Table 1. Situation statistics of field test wells井号 完井时间 管柱长度/
m管柱伸
长量/m封隔器验
封情况上层配注量/
(m3∙d−1)上层注水量/
(m3∙d−1)上层水量误差,% 下层配注量/
(m3∙d−1)下层注水量/
(m3∙d−1)下层水量
误差,%Q93-4 2019.10.21 1 841 1.6 合格 16 16.54 3.37 14 14.37 2.64 Q91-8 2019.10.29 1 837 1.9 合格 15 15.14 0.93 15 14.55 3.00 Q65-6 2019.11.15 1 859 2.4 合格 10 9.88 1.20 15 16.01 6.73 Q65-4 2020.07.25 1 781 1.7 合格 10 10.56 5.60 20 20.23 1.15 以其中的姬塬油田Q93-4井为例,该井井深1 860 m,井斜角23.7°,分层配注量分别为16和14 m3/d。该井设计管柱长度1 841 m,封隔器按照设计打压坐封,最大压力18 MPa,预置电缆柔性复合管伸长量为1.70 m(见图11),坐封后远程验证封隔器密封情况,地面建立激动压力,内压有波动,外压保持稳定,表明封隔器坐封可靠(见图12)。该井上层配注16 m3/d,实注16.54 m3/d,下层配注14 m3/d,实注14.37 m3/d,分层配注误差分别为3.37%和2.64%,按照油田配注合格要求,分层配注误差小于20%为合格,两层分层水量合格,且历史曲线显示流量平稳,长期满足配注要求(见图13)。现场试验表明,预置电缆柔性复合管数字式分注技术可实现井下分层注水、远程实时监控的目的。
4. 结论与建议
1)井下预置电缆柔性复合管爆破压力96 MPa、抗外压29 MPa,现场试验管柱最长伸长2.40 m,验封合格,其拉伸、抗外压等性能满足分注井封隔器坐封与长期在井下高压环境中的服役要求。
2)智能配水器具备分层流量自动测调、自动数据监测功能。预置电缆柔性复合管可满足供电、通信功能要求,实现分层压力、流量远程实时监控,大幅降低人工成本。
3)针对现场注水井带压作业要求,建议在预置电缆柔性复合管数字式分注技术基础上,开展配套带压作业装置及关键工具研究,进一步提升工艺的适应性。
-
表 1 支撑剂运移与铺置试验方案
Table 1 Scheme of proppant transport and placement test
试验组 泵注排量/(L∙min–1) 支撑剂 压裂液黏度/(mPa·s) 注入位置 PIV拍摄区域(砂堤位置) 1 12.0 40/70目陶粒 2.5 上、中、下孔 前缘、中部、后缘 2 18.0 40/70目陶粒 2.5 上、中、下孔 前缘、中部 3 24.0 40/70目陶粒 2.5 上、中、下孔 前缘、中部 4 12.0 70/140目石英砂 6.0 上、中、下孔 中部 5 12.0 70/140目石英砂 1.0 上、中、下孔 中部 6 12.0 70/140目石英砂 2.5 上、中、下孔 中部、后缘 7 12.0 70/140目石英砂 2.5 上孔 前缘 8 12.0 70/140目石英砂 2.5 中孔 前缘 9 12.0 70/140目石英砂 2.5 下孔 前缘 表 2 不同黏度压裂液下砂堤表面支撑剂颗粒运动角度统计
Table 2 Statistics of movement angle of proppant particles near sand embankment surface under different viscosity
压裂液黏度/
(mPa·s)角度占比,% 0°~10°和350°~360° 0°~20°和340°~360° 1.0 57.36 90.68 2.5 82.22 96.13 6.0 89.56 97.02 -
[1] 马春晓,邢云,罗攀,等. 陆相页岩气储层裂缝支撑剂铺置规律研究[J]. 钻井液与完井液,2022,39(3):373–382. MA Chunxiao, XING Yun, LUO Pan, et al. Research on proppant migration law of fractures in ccontinental shale gas rreservoir[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 373–382.
[2] 徐加祥,希尔艾力·伊米提,杨立峰,等. 支撑剂在非贯穿型裂缝网络中的输送特征模拟[J]. 断块油气田,2022,29(4):532–538. XU Jiaxiang, YIMITI Xieraili, YANG Lifeng, et al. Simulation of proppant transportation characteristics in non-penetrating fracture network[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 532–538.
[3] 张潇,刘欣佳,田永东,等. 水力压裂支撑剂铺置形态影响因素研究[J]. 特种油气藏,2021,28(6):113–120. doi: 10.3969/j.issn.1006-6535.2021.06.015 ZHANG Xiao, LIU Xinjia, TIAN Yongdong, et al. Study on factors influencing the displacement pattern of hydraulic fracturing proppant[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 113–120. doi: 10.3969/j.issn.1006-6535.2021.06.015
[4] 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191. doi: 10.11911/syztjs.2023023 JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reser-voirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191. doi: 10.11911/syztjs.2023023
[5] 马新华,谢军,雍锐,等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发,2020,47(5):841–855. MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841–855.
[6] 何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发,2021,11(2):135–145. HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 135–145.
[7] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84.
[8] 雷群,胥云,才博,等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发,2022,49(1):166–172. LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166–172.
[9] 郭建春,周航宇,唐堂,等. 非常规储层压裂支撑剂输送实验及数值模拟研究进展[J]. 钻采工艺,2022,45(3):48–54. GUO Jianchun, ZHOU Hangyu, TANG Tang, et al. Advances of experiment and numerical simulation researches on proppant transport for unconventional reservoir fracturing[J]. Drilling & Production Technology, 2022, 45(3): 48–54.
[10] 蒋廷学,卞晓冰,侯磊,等. 粗糙裂缝内支撑剂运移铺置行为试验[J]. 中国石油大学学报(自然科学版),2021,45(6):95–101. JIANG Tingxue, BIAN Xiaobing, HOU Lei, et al. Experiment on proppant migration and placement behavior in rough fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 95–101.
[11] KERN L R, PERKINS T K, WYANT R E. The mechanics of sand movement in fracturing[J]. Journal of Petroleum Technology, 1959, 11(7): 55–57. doi: 10.2118/1108-G
[12] 周德胜,张争,惠峰,等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺,2017,39(4):499–508. ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017, 39(4): 499–508.
[13] LIU Xinjia, ZHANG Xiao, WEN Qingzhi, et al. Experimental research on the proppant transport behavior in nonviscous and viscous fluids[J]. Energy & Fuels, 2020, 34(12): 15969–15982.
[14] WU C H, SHARMA M M. Effect of perforation geometry and orientation on proppant placement in perforation clusters in a horizontal well[R]. SPE-179117-MS, 2016.
[15] 陈健,管彬,张涛. 页岩气储层支撑剂输送大尺度主缝实验装置研制[J]. 钻采工艺,2022,45(1):110–115. CHEN Jian, GUAN Bin, ZHANG Tao. Large-scale main fracture experimental device for proppant transportation in shale gas reservoir[J]. Drilling & Production Technology, 2022, 45(1): 110–115.
[16] GRANT I, SMITH G H. Modern developments in particle image velocimetry[J]. Optics and Lasers in Engineering, 1988, 9(3/4): 245–264.
[17] LI Genghong, LI Zhipeng, GAO Zhengming, et al. Particle image velocimetry experiments and direct numerical simulations of solids suspension in transitional stirred tank flow[J]. Chemical Engineering Science, 2018, 191: 288–299. doi: 10.1016/j.ces.2018.06.073
[18] FRANK-GILCHRIST D P, PENKO A, CALANTONI J. Investigation of sand ripple dynamics with combined particle image and tracking velocimetry[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(10): 2019–2036. doi: 10.1175/JTECH-D-18-0054.1
[19] FJAESTAD D, TOMAC I. Experimental investigation of sand proppant particles flow and transport regimes through narrow slots[J]. Powder Technology, 2019, 343: 495–511. doi: 10.1016/j.powtec.2018.11.004
[20] FERNÁNDEZ M E, PUGNALONI L A, SÁNCHEZ M. Proppant transport in a planar fracture: Particle image velocimetry[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103860. doi: 10.1016/j.jngse.2021.103860
[21] 张涛, 郭建春, 孙堃, 等. 一种可实现三维流场测试的可视化平板裂缝装置: CN201910087439.5[P]. 2020-05-01. ZHANG Tao, GUO Jianchun, SUN Kun, et al. Visual flat crack device capable of realizing three-dimensional flow field test: CN201910087439.5[P]. 2020-05-01.