Key Drilling Technologies for Metamorphic Buried Hill Reservoirs in Bohai Oilfield
-
摘要:
渤海油田某潜山构造的深部变质岩潜山具有巨大的成藏潜力,但该构造地质条件复杂,目的层较深,钻井面临机械钻速低、储层保护难度大、井壁失稳和漏失风险高等技术难点,为此,进行了钻头及提速工具优化设计、井壁稳定技术、储层保护技术、螺杆钻具优化、防漏堵漏技术等方面的研究,形成了渤海油田变质岩潜山油藏钻井关键技术。该构造的7口探井应用了该技术,克服了该构造存在的技术难点,机械钻速得到提高,其中3口探井获得高产油气流。研究和现场应用结果表明,渤海油田变质岩潜山油藏钻井关键技术可为渤海油田深层变质岩潜山油气藏的勘探开发提供技术支持。
Abstract:A deep metamorphic buried hill in Bohai Oilfield has a great potential for hydrocarbon discoveries. However, complicated geological tectonic conditions and deeply buried target zone create a series of drilling challenges such as low rate of penetration (ROP), difficult reservoir protection, and high risk of wellbore instability and leakage. To solve the problems, a study was created to evaluate the optimization of drill bits and ROP improvement tools, wellbore stability technologies, reservoir protection technologies, positive displacement motor(PDM) optimization, and leakage prevention and plugging technologies. As a result, key drilling technologies for metamorphic buried hill reservoirs in Bohai Oilfield were developed, which were then successfully applied in seven exploration wells in this buried hill structure. As a result, the technical difficulties of the structure were overcome, i.e., the ROP was increased, and three exploration wells obtained high oil flow. The research and field applications indicate that the key drilling technologies can provide technical support for the exploration and development of deep metamorphic buried hill reservoirs in Bohai Oilfield.
-
-
[1] 李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15. doi: 10.11911/syztjs.2022028 LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15. doi: 10.11911/syztjs.2022028
[2] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. doi: 10.11911/syztjs.2020067 YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27. doi: 10.11911/syztjs.2020067
[3] 胡大梁,欧彪,郭治良,等. 川西二叠系超深风险井永胜1井钻井关键技术[J]. 断块油气田,2019,26(4):524–528. HU Daliang, OU Biao, GUO Zhiliang, et al. Key drilling technology of Permian ultra-deep risk exploration Well YS1 in western Sichuan[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 524–528.
[4] 陈安明,张进双,白彬珍,等. 松辽盆地深井钻井技术难点与对策[J]. 石油钻探技术,2011,39(4):119–122. doi: 10.3969/j.issn.1001-0890.2011.04.026 CHEN Anming, ZHANG Jinshuang, BAI Binzhen, et al. The drilling problem and countermeasures of deep wells in Songliao Basin[J]. Petroleum Drilling Techniques, 2011, 39(4): 119–122. doi: 10.3969/j.issn.1001-0890.2011.04.026
[5] 贾开富,王峰,宋明星,等. 准噶尔盆地中深层薄层叠置砂体储层预测[J]. 特种油气藏,2018,25(4):33–38. doi: 10.3969/j.issn.1006-6535.2018.04.007 JIA Kaifu, WANG Feng, SONG Mingxing, et al. Prediction of medium-deep reservoir with thin-overlapping sandbody in Junggar Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 33–38. doi: 10.3969/j.issn.1006-6535.2018.04.007
[6] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8. HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.
[7] 施和生,王清斌,王军,等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36–45. doi: 10.3969/j.issn.1672-7703.2019.01.005 SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 Structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36–45. doi: 10.3969/j.issn.1672-7703.2019.01.005
[8] 邓建明,马英文. 渤海中深层天然气田钻完井关键技术现状及展望[J]. 石油钻采工艺,2018,40(6):677–683. doi: 10.13639/j.odpt.2018.06.001 DENG Jianming, MA Yingwen. Status and prospect of key drilling and completion technologies used in middle-deep natural gas fields of the Bohai Sea[J]. Oil Drilling & Production Technology, 2018, 40(6): 677–683. doi: 10.13639/j.odpt.2018.06.001
[9] 陈真,罗鹏,袁洪水,等. 渤中X构造花岗片麻岩矿物特征录测关系研究与工程应用[J]. 录井工程,2019,30(3):73–76. doi: 10.3969/j.issn.1672-9803.2019.03.013 CHEN Zhen, LUO Peng, YUAN Hongshui, et al. Study on the relation between mud logging and well logging of granite gneiss mineral characteristics in Bozhong X Structure and its engineering application[J]. Mud Logging Engineering, 2019, 30(3): 73–76. doi: 10.3969/j.issn.1672-9803.2019.03.013
[10] 薛懿伟,陈立强,徐鲲,等. 渤中19-6大气田深部潜山硬地层钻井提速技术研究与应用[J]. 中国海上油气,2020,32(4):140–146. XUE Yiwei, CHEN Liqiang, XU Kun, et al. Research and application of ROP improvement technology in deep buried hill hard formations of BZ19-6 large gas field[J]. China Offshore Oil and Gas, 2020, 32(4): 140–146.
[11] 马英文,刘小刚. 抗高温无固相储层保护钻井液体系[J]. 石油钻采工艺,2018,40(6):726–729. MA Yingwen, LIU Xiaogang. A high-temperature & solid-free drilling fluid system with the property of reservoir protection[J]. Oil Drilling & Production Technology, 2018, 40(6): 726–729.
[12] 杨一凡,邱正松,李佳,等. 渤中19-6深部潜山高温气层保护钻井液技术[J]. 钻井液与完井液,2020,37(4):476–481. YANG Yifan, QIU Zhengsong, LI Jia, et al. Technology drilling fluid for protecting high temperature deep buried hill gas reservoirs in Bozhong 19-6 Block[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 476–481.
[13] 许杰,刘海龙,张磊. 非均匀地应力条件下浅部泥岩井壁力化耦合作用分析[J]. 非常规油气,2021,8(4):99–105. XU Jie, LIU Hailong, ZHANG Lei. Analysis of the coupling action of borehole wall for the shallow mudstone under the condition of non-uniform in-situ stress[J]. Unconventional Oil & Gas, 2021, 8(4): 99–105.
[14] 许杰,窦蓬,林海,等. 渤中凹陷西南环深层探井钻井难点与技术对策[J]. 石油钻采工艺,2021,43(2):177–183. doi: 10.13639/j.odpt.2021.02.007 XU Jie, DOU Peng, LIN Hai, et al. Drilling difficulties of deep explorations wells in the southwest zone of Bozhong Sag and their technical countermeasures[J]. Oil Drilling & Production Technology, 2021, 43(2): 177–183. doi: 10.13639/j.odpt.2021.02.007
[15] 韩耀图, 马英文, 谢涛, 等.渤中19-6构造潜山花岗片麻岩地层漏失压力分析[J].石油钻采工艺, 2018, 40(增刊1): 136-138. HAN Yaotu, MA Yingwen, XIE Tao, et al. Analysis on leakage pressure of buried-hill granite gneiss in BZ19-6 structure[J]. Oil Drilling & Production Technology, 2018, 40(supplement1): 136-138.
[16] 张磊,许杰,谢涛,等. 几种裂缝性漏失压力计算模型的比较分析[J]. 石油机械,2018,46(9):13–17. doi: 10.16082/j.cnki.issn.1001-4578.2018.09.003 ZHANG Lei, XU Jie, XIE Tao, et al. Comparison of several calculation models for loss pressure of fractured formation[J]. China Petroleum Machinery, 2018, 46(9): 13–17. doi: 10.16082/j.cnki.issn.1001-4578.2018.09.003
[17] 邹德永,陈雅辉,赵方圆,等. 斧形PDC齿破岩规律数值模拟研究[J]. 特种油气藏,2021,28(6):137–143. doi: 10.3969/j.issn.1006-6535.2021.06.018 ZOU Deyong, CHEN Yahui, ZHAO Fangyuan, et al. Study on rock breaking rules of axe-shaped PDC cutter with numerical simula-tion[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 137–143. doi: 10.3969/j.issn.1006-6535.2021.06.018
[18] 王倩,王刚,蒋宏伟,等. 泥页岩井壁稳定耦合研究[J]. 断块油气田,2012,19(4):517–521. doi: 10.6056/dkyqt201204027 WANG Qian, WANG Gang, JIANG Hongwei, et al. Study on shale wellbore stability coupling[J]. Fault-Block Oil & Gas Field, 2012, 19(4): 517–521. doi: 10.6056/dkyqt201204027
[19] 毕博. 泥页岩渗透水化作用对井壁稳定的影响[J]. 钻井液与完井液,2011,28(增刊1):1–3. doi: 10.3969/j.issn.1001-5620.2011.z1.001 BI Bo. Research on borehole stability affected by shale penetration and hydration[J]. Drilling Fluid & Completion Fluid, 2011, 28(supplement1): 1–3. doi: 10.3969/j.issn.1001-5620.2011.z1.001
[20] 叶周明,刘小刚,崔治军,等. 大尺寸井眼钻井工艺在渤海油田某探井中的应用和突破[J]. 石油钻采工艺,2014,36(4):18–21. doi: 10.13639/j.odpt.2014.04.005 YE Zhouming, LIU Xiaogang, CUI Zhijun, et al. Application and breakthrough of large-size hole drilling technology in some exploration well in Bohai Oilfield[J]. Oil Drilling & Production Technology, 2014, 36(4): 18–21. doi: 10.13639/j.odpt.2014.04.005
-
期刊类型引用(14)
1. 赵楠,李万渠,冯金钰,王奕儒,李丽. 多裂纹对裂纹搭接规律影响数值模拟及机理研究. 钻采工艺. 2022(02): 160-164 . 百度学术
2. 张瑞萍,祝云,窦益华,杨晓儒,李明飞. 基于FLAC~(3D)的压裂工况下地应力重新分布规律研究. 石油机械. 2021(08): 91-99 . 百度学术
3. 何其胜,王贵君. 砂砾岩水压致裂机理及数值仿真研究. 三峡大学学报(自然科学版). 2020(06): 45-49 . 百度学术
4. 尉雪梅,吴飞鹏,刘恒超,徐尔斯,张艳玉,蒲春生. 燃爆压裂井井周诱导应力分布规律. 中国石油大学学报(自然科学版). 2018(01): 105-112 . 百度学术
5. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
6. 吴飞鹏,徐尔斯,尉雪梅,刘恒超,李德,丁乾申. 燃爆诱导水力压裂多裂缝耦合起裂规律. 天然气工业. 2018(11): 65-72 . 百度学术
7. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 . 百度学术
8. 彭瑀,李勇明,赵金洲. 考虑任意压力分布的裂缝诱导应力场计算模型及其应用. 中国石油大学学报(自然科学版). 2017(03): 92-97 . 百度学术
9. 李玮,纪照生. 暂堵转向压裂机理有限元分析. 断块油气田. 2016(04): 514-517 . 百度学术
10. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 . 百度学术
11. 李玉梅,吕炜,宋杰,李军,杨宏伟,于丽维. 层理性页岩气储层复杂网络裂缝数值模拟研究. 石油钻探技术. 2016(04): 108-113 . 本站查看
12. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
13. 李士斌,官兵,张立刚,陈双庆,王业强. 水平井压裂裂缝局部应力场扰动规律. 油气地质与采收率. 2016(06): 112-119 . 百度学术
14. 林飞,盛萍,李春颖. 煤层气藏水平井分段压裂裂缝参数优化. 中州煤炭. 2016(02): 126-128 . 百度学术
其他类型引用(7)