自激振荡射流空化泡动力学特征及超声强化数值研究

王满, 袁淼, 闵瑞, 袁涛

王满,袁淼,闵瑞,等. 自激振荡射流空化泡动力学特征及超声强化数值研究[J]. 石油钻探技术,2023, 51(6):43-49. DOI: 10.11911/syztjs.2023058
引用本文: 王满,袁淼,闵瑞,等. 自激振荡射流空化泡动力学特征及超声强化数值研究[J]. 石油钻探技术,2023, 51(6):43-49. DOI: 10.11911/syztjs.2023058
WANG Man, YUAN Miao, MIN Rui, et al. Numerical study on the dynamic characteristics and ultrasonic enhancement of cavitation bubbles under self-excited oscillating jet [J]. Petroleum Drilling Techniques,2023, 51(6):43-49. DOI: 10.11911/syztjs.2023058
Citation: WANG Man, YUAN Miao, MIN Rui, et al. Numerical study on the dynamic characteristics and ultrasonic enhancement of cavitation bubbles under self-excited oscillating jet [J]. Petroleum Drilling Techniques,2023, 51(6):43-49. DOI: 10.11911/syztjs.2023058

自激振荡射流空化泡动力学特征及超声强化数值研究

基金项目: 国家自然科学基金面上项目“非淹没双空化磨料射流发生调制机理与冲击破坏特性研究”(编号:52175245)资助。
详细信息
    作者简介:

    王满(1983—),男,河南南阳人,2004年毕业于吉林大学数字地质科学专业,2010年获吉林大学数字地质科学专业博士学位,正高级工程师,博士生导师,主要从事煤矿瓦斯治理及灾害防治方面的研究工作。E-mail:wangman.w@gmail.com

  • 中图分类号: TE242

Numerical Study on the Dynamic Characteristics and Ultrasonic Enhancement of Cavitation Bubbles under Self-Excited Oscillating Jet

  • 摘要:

    为了解亥姆霍兹喷嘴腔内空化泡动力学特征及超声波作用下空化泡的响应演化规律,以空化动力学为基础,建立了自激振荡喷嘴腔内空化气泡动态变化的计算模型,研究了亥姆霍兹喷嘴腔长和腔径对腔内空化强度的影响及附加声场情况下空化泡的动态变化规律。研究结果表明:自激振荡射流喷嘴的腔长和腔径均会影响腔室内空化强度,腔长和腔径增大有利于提高空化强度;声–流耦合场中的空化泡膨胀收缩相比单一流场更剧烈;超声波的频率和幅值对于空化强度的影响较大,存在最佳的超声波频率,使腔内空化强度达到最大,超声频率过高会导致声波膨胀时间缩短,空化核的增长时间也会随之缩短;声场幅值与空化强度正相关。研究结果有助于提升自激振荡空化射流技术及超声增强脉冲射流技术的现场应用效果。

    Abstract:

    In order to understand the dynamic characteristics of cavitation bubbles in a Helmholtz nozzle cavity and the evolution of cavitation bubble responses under the influence of ultrasonic waves, a mathematical model describing the dynamic variation of cavitation bubbles in a self-excited oscillating nozzle cavity was developed based on cavitation dynamics. In addition, the effects of Helmholtz nozzle cavity length and diameter on cavitation intensity and the dynamic behavior of cavitation bubbles when subjected to an additional acoustic field were studied. The results showed that both the cavity length and cavity diameter of the self-oscillating jet nozzle affected the cavitation intensity in the cavity. The increase in the cavity length and cavity diameter contributed to improving cavitation intensity. The expansion and contraction of cavitation bubbles in the acoustic–fluid coupling field were more severe than those in a single flow field. The frequency and amplitude of ultrasonic waves also had a great influence on cavitation intensity, with an optimal ultrasonic wave frequency identified for maximizing cavitation intensity in the cavity. In addition, excessively high ultrasound frequencies resulted in shorter acoustic wave expansion time and a shorter growth time of the cavitation nucleus. There was a positive association between cavitation intensity and acoustic field amplitude. These research findings are valuable for enhancing the practical application of self-excited oscillating cavitation jet technology and ultrasonic-enhanced pulse jet technology.

  • 图  1   球形空化泡示意

    Figure  1.   Schematic diagram of spherical vacuoles

    图  2   腔室的等效电路[24]

    Figure  2.   Equivalent circuit of cavity

    图  3   亥姆霍兹喷嘴的结构

    Figure  3.   Structure of Helmholtz nozzle

    图  4   不同谐振腔直径、长度条件下空化泡的动态变化

    Figure  4.   Dynamic variation of cavitation bubbles with different cavity diameters and cavity lengths

    图  5   不同频率声场作用下不同腔长喷嘴内空化泡的动态变化规律

    Figure  5.   Dynamic variation law of cavitation bubbles in nozzles with different cavity lengths under action of different frequency acoustic fields

    图  6   不同幅值超声波作用下喷嘴内空化泡的动态变化规律(Dc=10.5 mm, Lc=3.0 mm)

    Figure  6.   Dynamic variation law of cavitation bubbles in a nozzle under the influence of ultrasonic waves of different amplitudes (Dc=10.5 mm, Lc=3.0 mm)

    表  1   亥姆霍兹喷嘴尺寸

    Table  1   Dimensions of Helmholtz nozzles

    d1/mmd2/mmβ/(°)Lc/mmDc/mm
    1.21.31203.08.0
    9.0
    10.0
    10.5
    11.0
    1.21.31202.010.5
    2.5
    3.0
    3.5
    4.0
    下载: 导出CSV
  • [1]

    LI Deng, KANG Yong, WANG Xiaochuan, et al. Effects of nozzle inner surface roughness on the cavitation erosion characteristics of high speed submerged jets[J]. Experimental Thermal and Fluid Science, 2016, 74: 444–452. doi: 10.1016/j.expthermflusci.2016.01.009

    [2]

    LI Deng, KANG Yong, DING Xiaolong, et al. Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet[J]. Experimental Thermal and Fluid Science, 2017, 82: 314–325. doi: 10.1016/j.expthermflusci.2016.11.029

    [3]

    CAI Tengfei, LIU Boshen, MA Fei, et al. Influence of nozzle lip geometry on the Strouhal number of self-excited waterjet[J]. Experimental Thermal and Fluid Science, 2020, 112: 109978. doi: 10.1016/j.expthermflusci.2019.109978

    [4]

    CAI Tengfei, PAN Yan, MA Fei. Effects of nozzle lip geometry on the cavitation erosion characteristics of self-excited cavitating waterjet[J]. Experimental Thermal and Fluid Science, 2020, 117: 110137. doi: 10.1016/j.expthermflusci.2020.110137

    [5]

    LIU Wenchuan, KANG Yong, WANG Xiaochuan, et al. Integrated CFD-aided theoretical demonstration of cavitation modulation in self-sustained oscillating jets[J]. Applied Mathematical Modelling, 2020, 79: 521–543. doi: 10.1016/j.apm.2019.10.050

    [6] 李晓红,卢义玉,赵瑜,等. 高压脉冲水射流提高松软煤层透气性的研究[J]. 煤炭学报,2008,33(12):1386–1390.

    LI Xiaohong, LU Yiyu, ZHAO Yu, et al. Study on improving the permeability of soft coal seam with high pressure pulsed water jet[J]. Journal of China Coal Society, 2008, 33(12): 1386–1390.

    [7] 郎宝山. 稠油水平井大直径封漏堵水管柱的研制与应用[J]. 特种油气藏,2020,27(3):157–162.

    LANG Baoshan. Development and application of large-diameter sealing-plugging string in the heavy-oil horizontal well[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 157–162.

    [8] 冷冰. 火驱同心双管分层注气管柱研制及试验[J]. 特种油气藏,2020,27(4):149–155.

    LENG Bing. Development and test of concentric dual-tube zonal gas injection string in fire-flooding[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 149–155.

    [9] 向美景,王晓川,李登,等. 亥姆霍兹上喷嘴出口结构对射流振荡特性的影响[J]. 振动与冲击,2020,39(7):74–80.

    XIANG Meijing, WANG Xiaochuan, LI Deng, et al. Effects of Helmholtz upper nozzle outlet structure on jet oscillation characteristics[J]. Journal of Vibration and Shock, 2020, 39(7): 74–80.

    [10] 冯国强,隋义勇,冯国勇. 柱塞举升优化设计及敏感性分析[J]. 石油钻探技术,2007,35(5):104–107.

    FENG Guoqiang, SUI Yiyong, FENG Guoyong. Optimum design and sensitivity analysis for plunger lift[J]. Petroleum Drilling Techniques, 2007, 35(5): 104–107.

    [11] 刘尧文,明月,张旭东,等. 涪陵页岩气井 “套中固套” 机械封隔重复压裂技术[J]. 石油钻探技术,2022,50(3):86–91.

    LIU Yaowen, MING Yue, ZHANG Xudong, et al. “Casing in casing” mechanical isolation refracturing technology in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86–91.

    [12] 李江云,王乐勤,徐如良,等. 低压大直径喷嘴自激脉冲射流空化模型[J]. 工程热物理学报,2005,26(3):438–440.

    LI Jiangyun, WANG Leqin, XU Ruliang, et al. Cavitation model for the low-pressure large-dia self-excited pulse nozzle[J]. Journal of Engineering Thermophysics, 2005, 26(3): 438–440.

    [13]

    PLESSETT M S, PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145–185. doi: 10.1146/annurev.fl.09.010177.001045

    [14]

    KELLER J B, MIKSIS M. Bubble oscillations of large amplitude[J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628–633. doi: 10.1121/1.384720

    [15]

    DAVYDOV L, REDDY E P, FRANCE P, et al. Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders[J]. Applied Catalysis B: Environmental, 2001, 32(1/2): 95–105.

    [16] 吴鹏飞. 声–流耦合空化机理研究[D]. 北京: 中国科学院大学, 2018.

    WU Pengfei. Mechanism and dynamics of bydrodynamic-acoustic cavitation[D]. Beijing: University of Chinese Academy of Sciences, 2018.

    [17]

    FEHLBERG E. Classical fourth-and lower order Runge-Kutta formulas with stepsize control and their application to heat transfer problems[J]. Computing, 1970, 6(1): 61–71.

    [18] 罗贤能. 声空化气泡成长及破裂研究[D]. 重庆: 重庆大学, 2010.

    LUO Xianneng. The development and collapse process of acoustic cavitation bubble[D]. Chongqing: Chongqing University, 2010.

    [19] 刘华敏,李牧,刘乔平,等. 涪陵页岩气田柱塞气举工艺研究与应用[J]. 石油钻探技术,2020,48(3):102–107.

    LIU Huamin, LI Mu, LIU Qiaoping, et al. Research and application of plunger gas lift technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102–107.

    [20] 汤勇,胡世莱,汪勇,等. “注入—压裂—返排”全过程的CO2相态特征:以鄂尔多斯盆地神木气田致密砂岩气藏SH52井为例[J]. 天然气工业,2019,39(9):58–64.

    TANG Yong, HU Shilai, WANG Yong, et al. Phase behaviors of CO2 in the whole process of injection-fracturing-flowback: a case study of Well SH52 in a fight sandstone gas reservoir of the Shenmu Gas Field, Ordos Basin[J]. Natural Gas Industry, 2019, 39(9): 58–64.

    [21]

    LIU Wenchuan, KANG Yong, ZHANG Mingxing, et al. Experimental and theoretical analysis on chamber pressure of a self-resonating cavitation waterjet[J]. Ocean Engineering, 2018, 151: 33–45. doi: 10.1016/j.oceaneng.2018.01.019

    [22] 李晓红,杨林,王建生,等. 自激振荡脉冲射流装置的固有频率特性[J]. 煤炭学报,2000,25(6):641–644.

    LI Xiaohong, YANG Lin, WANG Jiansheng, et al. The natural frequency characteristic of the self-excited oscillation pulsed water jet device[J]. Journal of China Coal Society, 2000, 25(6): 641–644.

    [23] 唐川林,杨林,张凤华,等. 来流脉动对自激振荡脉冲射流的影响[J]. 力学与实践,2001,23(3):24–27.

    TANG Chuanlin, YANG Lin, ZHANG Fenghua, et al. Effects of upstream oscillating flow on the self-excited oscillation pulsed jet[J]. Mechanics in Engineering, 2001, 23(3): 24–27.

    [24] 唐川林,胡东,裴江红. 自激振荡脉冲射流喷嘴频率特性实验研究[J]. 石油学报,2007,28(4):122–125. doi: 10.7623/syxb200704026

    TANG Chuanlin, HU Dong, PEI Jianghong. Experimental study on the frequency characteristic of the self-excited oscillation pulsed nozzle[J]. Acta Petrolei Sinica, 2007, 28(4): 122–125. doi: 10.7623/syxb200704026

    [25] 赵韡,祝锡晶,侯帅豪,等. 自激振荡脉冲射流的声振特性分析[J]. 电加工与模具,2019(6):66–70. doi: 10.3969/j.issn.1009-279X.2019.06.014

    ZHAO Wei, ZHU Xijing, HOU Shuaihao, et al. The acoustic signal characteristics of self-excited oscillation pulsed water jet[J]. Electromachining & Mould, 2019(6): 66–70. doi: 10.3969/j.issn.1009-279X.2019.06.014

    [26] 方珍龙. 亥姆赫兹式自激振荡射流空化特性研究[D]. 武汉: 武汉大学, 2016.

    FANG Zhenlong. Research on cavitation characteristics of Helmholtz self-excited oscillation pulsed jet[D]. Wuhan: Wuhan University, 2016.

    [27] 王循明. 自激振荡脉冲射流装置性能影响因素数值分析及喷嘴结构优化设计[D]. 杭州: 浙江大学, 2005.

    WANG Xunming. Influence factors simulation study of the self-excited oscillation pulsed jet device and nozzle structure optimized design[D]. Hangzhou: Zhejiang University, 2005.

    [28]

    ŘÍHA Z, ZELEŇÁK M, KRUML T, et al. Comparison of the disintegration abilities of modulated and continuous water jets[J]. Wear, 2021, 478/479: 203891. doi: 10.1016/j.wear.2021.203891

    [29]

    NAG A, HLOCH S, DIXIT A R, et al. Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3): 829–840.

  • 期刊类型引用(8)

    1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
    2. 肖元相,解永刚,李明瑞,唐梅荣,陈宝春,周长静,邝聃,李达,苏煜彬,段志锋,刘欣佳. 铝土岩储层水平井完井分段压裂关键技术及应用——以鄂尔多斯盆地陇东地区太原组为例. 天然气地球科学. 2024(08): 1467-1479 . 百度学术
    3. 蔡东胜,孙梦慈,马洪亮,杨浩. 宁庆区块低固相阳离子聚合物钻井液技术研究与试验. 应用化工. 2024(12): 2832-2837 . 百度学术
    4. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    5. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    6. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    7. 赵宏波,季伟,王冲,李兴宝,陈国飞. 榆林气田标志层法和沉积旋回法水平井导向技术. 石油钻探技术. 2018(06): 39-46 . 本站查看
    8. 张时中. 三种钻井提速工具在陇东气田的应用研究. 河南科技. 2018(14): 115-117 . 百度学术

    其他类型引用(1)

图(6)  /  表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  83
  • PDF下载量:  72
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2023-07-30
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回