考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究

张浩哲, 许争鸣, 邓智禄

张浩哲,许争鸣,邓智禄. 考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究[J]. 石油钻探技术,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
引用本文: 张浩哲,许争鸣,邓智禄. 考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究[J]. 石油钻探技术,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD simulation and prediction model of annular frictional pressure drop with combined effects of drillpipe rotation speed and eccentricity [J]. Petroleum Drilling Techniques,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
Citation: ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD simulation and prediction model of annular frictional pressure drop with combined effects of drillpipe rotation speed and eccentricity [J]. Petroleum Drilling Techniques,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057

考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究

基金项目: 国家自然科学基金项目“气体非平衡溶解对深井气侵井筒气–液两相流影响机制研究”(编号:52104009)资助。
详细信息
    作者简介:

    张浩哲(2001—),男,山东淄博人,2023年毕业于中国地质大学(北京)石油工程专业,北京大学在读博士研究生,主要从事油气井流体力学与工程方面的研究。E-mail: haozhezhang0607@foxmail.com。

    通讯作者:

    许争鸣,xuzm@cugb.edu.cn

  • 中图分类号: TE21

CFD Simulation and Prediction Model of Annular Frictional Pressure Drop with Combined Effects of Drillpipe Rotation Speed and Eccentricity

  • 摘要:

    深井钻井时,准确预测环空摩擦压降是保证井筒压力预测精度的关键,钻井液流速、钻杆转速及环空偏心度是影响环空摩擦压降的重要因素。为研究多种因素耦合作用下环空摩擦压降的变化规律,建立了水平井环空钻井液流动模型,对幂律流体在层流和湍流条件下的流动特性开展了数值模拟。模拟结果表明:层流状态下,偏心度和钻杆转速单独作用时,都会导致环空摩擦压降减小;偏心度和钻杆转速共同作用时,环空摩擦压降随偏心度先增大后减小,这与偏心环空中惯性效应对螺旋流的破坏作用有关。湍流状态下,钻杆转速对同心环空的摩擦压降几乎没有影响;偏心环空中,随着钻杆转速增大,不同偏心度下的环空摩擦压降值逐渐增加,且都逐渐趋近于同心环空摩擦压降。基于数值模拟数据,建立了层流和湍流条件下考虑钻杆转速和偏心度耦合作用的环空摩擦因子预测模型,该模型对模拟数据的最大拟合误差为9.18%,对试验数据的最大预测误差为8.33%。研究结果可为深井钻井时井筒压力控制和水力参数优化提供参考。

    Abstract:

    Accurate prediction of annular frictional pressure drop is the key to ensuring the accuracy of bottomhole pressure prediction during deep well drilling. The flow rate of the drilling fluid, drillpipe rotation speed, and the annular eccentricity are important factors affecting the annular frictional pressure drop. To investigate the change in annular frictional pressure drop with the combined effects of various factors, a drilling fluid flow model in the annulus of a horizontal well was developed, and the flow characteristics of power-law fluids under laminar and turbulent flow conditions were numerically investigated. The results show that: 1) under the laminar flow condition, annular frictional pressure drop decreases when the eccentricity or the drillpipe rotation speed increases separately. However, when these two parameters increase simultaneously, the annular frictional pressure drop increases first and then decreases as eccentricity increases. This is due to the destruction of helical flow by the inertia effect in the eccentric annulus. 2) Under the turbulent flow condition, drillpipe rotation speed has almost no effects on the frictional pressure drop in the concentric annulus. In the eccentric annulus, with the drillpipe rotation speed increasing, the frictional pressure drop under different eccentricities increases gradually and converges to the frictional pressure drop in the concentric annulus. Based on the numerical simulation data, the prediction model for annular frictional coefficient with the combined effects of drillpipe rotation speed and eccentricity under laminar and turbulent flow conditions are developed. The maximum fitting error of the model to the simulated data is 9.18%, and the prediction error for experimental data is no more than 8.33%. The results of this study could provide reference for wellbore pressure control and hydraulic parameter optimization during deep well drilling.

  • 图  1   水平井筒环空模型及横截面网格划分示意

    Figure  1.   Horizontal wellbore annulus model and cross-section meshing

    图  2   单位长度环空摩擦压降与总网格数的关系曲线

    Figure  2.   Relationship between annular frictional pressure drop per unit length and total mesh number

    图  3   模型验证结果

    Figure  3.   Model validation results

    图  4   钻杆不旋转时不同入口速度下单位长度环空摩擦压降随偏心度的变化

    Figure  4.   Variation of annular frictional pressure drop per unit length with eccentricity at different inlet velocities when drillpipe is not rotating

    图  5   钻杆不旋转时不同偏心度条件下的环空出口钻井液速度云图

    Figure  5.   Velocity contours of drilling fluid at annulus outlet with dfferent eccentricities when the drillpipe is not rotating

    图  6   同心环空(e=0)中不同入口速度下单位长度环空摩擦压降随钻杆转速的变化

    Figure  6.   Variation of annular frictional pressure drop per unit length with drillpipe rotation speed at different inlet velocities in a concentric annulus (e=0)

    图  7   同心环空(e=0)中不同钻杆转速下的钻井液表观黏度

    Figure  7.   Apparent viscosity of drilling fluid under different drillpipe rotation speeds in a concentric annulus (e=0)

    图  8   层流下不同钻杆转速时单位长度环空摩擦压降随偏心度的变化

    Figure  8.   Variation of annular frictional pressure drop per unit length with eccentricity at different drillpipe rotation speeds under laminar flow condition

    图  9   层流状态下钻杆旋转时同心环空与偏心环空中流体流线对比

    Figure  9.   Comparison of fluid streamline between concentric annulus and eccentric annulus during drillpipe rotation under laminar flow condition

    图  10   湍流状态下不同入口速度时环空摩擦压降随偏心度的变化曲线

    Figure  10.   Change curve of annular frictional pressure drop with eccentricity at different inlet velocities under turbulent flow condition

    图  11   环空中层流和湍流状态下出口处钻井液速度分布

    Figure  11.   Velocity distribution of drilling fluid at the outlet under laminar and turbulent flow conditions in the annulus

    图  12   湍流状态下不同入口速度时同心环空摩擦压降随钻杆转速的变化曲线

    Figure  12.   Change curve of concentric annular frictional pressure drop with drillpipe rotation speed at different inlet velocities under turbulent flow condition

    图  13   湍流状态下不同偏心度条件下单位长度环空摩擦压降随钻杆转速的变化

    Figure  13.   Variation of annular frictional pressure drop per unit length with drillpipe rotation speed under different eccentricity conditions and turbulent flow condition

    图  14   层流状态下钻杆不旋转时摩擦因子随偏心度的变化

    Figure  14.   Variation of frictional coefficient with eccentricity when drillpipe is not rotating under laminar flow condition

    图  15   层流状态下钻杆旋转时摩擦因子随泰勒数的变化

    Figure  15.   Variation of frictional coefficient with Taylor number when drillpipe is rotating under laminar flow condition

    图  16   湍流状态下钻杆不旋转时雷诺数与摩擦因子之间的关系

    Figure  16.   Relationship between Reynolds number and frictional coefficient when drillpipe is not rotating under turbulent flow condition

    图  17   湍流状态下钻杆旋转时泰勒数与摩擦因子之间的关系

    Figure  17.   Relationship between Taylor number and frictional coefficient when drillpipe is rotating under turbulent flow condition

    图  18   层流和湍流情况下摩擦因子预测值与模拟值的对比

    Figure  18.   Comparison between simulated and predicted frictional coefficients under laminar and turbulent flow conditions

    图  19   层流和湍流情况下环空摩擦压降预测值与试验数据的对比

    Figure  19.   Comparison between experimented and predicted annular frictional pressure drop under laminar and turbulent flow conditions

    表  1   网格无关性分析结果

    Table  1   Mesh independence analysis

    网格划分
    方案
    网格数总网格数单位长度环空摩擦
    压降/(Pa·m−1
    轴向径向周向
    118082434 560759.77
    2240103276 800730.67
    33601040144 000720.51
    44801648368 640719.56
    55002052520 000718.78
    下载: 导出CSV

    表  2   数值模拟方案

    Table  2   Scheme of numerical simulation

    稠度系数/
    (Pa·sn
    流性指数入口速度/
    (m·s−1
    偏心度钻杆转速/
    (r·min−1
    0.100.50层流:0.10, 0.15,
    0.20, 0.25, 0.30
    湍流:1.00, 1.20,
    1.40, 1.60, 1.80
    0, 0.2, 0.4,
    0.6, 0.8
    0, 50, 100, 150
    2.100.38层流:1.00
    湍流:4.00
    0.40, 100
    0.830.56
    0.370.59
    0.250.61
    下载: 导出CSV

    表  3   偏心度与公式(16)中a1a2的关系

    Table  3   The relationship between Reynolds number and a1, a2 in Eq. 16

    ea1a2
    00.08017−1.00121
    0.20.07819−0.99010
    0.40.07179−0.96671
    0.60.06114−0.97408
    0.80.05223−0.97522
    下载: 导出CSV

    表  4   R.M.Ahmed等人和M.Sorgun等人在试验中的环空尺寸及钻井液流变性参数

    Table  4   Annulus dimensions and rheological properties of drilling fluids in experiments of R.M.Ahmed and M.Sorgun

    数据来源环空尺寸偏心度钻杆转速/(r·min−1入口速度/(m·s−1钻井液流变性参数
    外径/mm内径/mm稠度系数/(Pa·sn流性指数
    R. M. Ahmed等人[3]38.012.70.10, 50, 100, 1500.44, 1.030.2500.610
    M. Sorgun等人[33]74.045.71.002.85, 3.08, 3.32, 3.560.2890.514
    下载: 导出CSV
  • [1] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.

    [2] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.

    [3] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20.

    YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20.

    [4]

    AHMED R M, MISKA S Z. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation[R]. SPE 112604, 2008.

    [5]

    ERGE O, OZBAYOGLU E M, MISKA S Z, et al. Equivalent circulating density modeling of Yield Power Law fluids validated with CFD approach[J]. Journal of Petroleum Science and Engineering, 2016, 140: 16–27. doi: 10.1016/j.petrol.2015.12.027

    [6] 赵岩. 非牛顿流体偏心环空螺旋流的CFD模拟[D]. 杭州: 中国计量大学, 2017.

    ZHAO Yan. Non-Newtonian fluid in eccentric annulus helical flow field of the CFD simulation[D]. Hangzhou: China Jiliang University, 2017.

    [7] 蔡萌. 幂律流体偏心环空螺旋流压力梯度的数值计算[J]. 石油钻采工艺,2010,32(2):11–14.

    CAI Meng. Numerical calculation of pressure gradient of helical flow of power-law fluid in eccentric annulus[J]. Oil Drilling & Production Technology, 2010, 32(2): 11–14.

    [8]

    MCCANN R C, QUIGLEY M S, ZAMORA M, et al. Effects of high-speed pipe rotation on pressures in narrow annuli[J]. SPE Drilling & Completion, 1995, 10(2): 96–103.

    [9]

    KELESSIDIS V C, MAGLIONE R, TSAMANTAKI C, et al. Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling[J]. Journal of Petroleum Science and Engineering, 2006, 53(3/4): 203–224.

    [10]

    PILEHVARI A, SERTH R. Generalized hydraulic calculation method for axial flow of non-Newtonian fluids in eccentric annuli[J]. SPE Drilling & Completion, 2009, 24(4): 553–563.

    [11]

    ERGE O, OZBAYOGLU E M, MISKA S Z, et al. The effects of drillstring-eccentricity, -rotation, and -buckling configurations on annular frictional pressure losses while circulating yield-power-law fluids[J]. SPE Drilling & Completion, 2015, 30(3): 257–271.

    [12]

    SORGUN M, OZBAYOGLU M E, AYDIN I. Modeling and experimental study of Newtonian fluid flow in annulus[J]. Journal of Energy Resources Technology, 2010, 132(3): 033102. doi: 10.1115/1.4002243

    [13]

    FOUNARGIOTAKIS K, KELESSIDIS V C, MAGLIONE R. Laminar, transitional and turbulent flow of Herschel–Bulkley fluids in concentric annulus[J]. The Canadian Journal of Chemical Engineering, 2008, 86(4): 676–683. doi: 10.1002/cjce.20074

    [14]

    SAASEN A. Annular frictional pressure losses during drilling—predicting the effect of drillstring rotation[J]. Journal of Energy Resources Technology, 2014, 136(3): 034501. doi: 10.1115/1.4026205

    [15] 贺成才. 幂律流体同心环空螺旋流数值模拟[J]. 钻井液与完井液,2002,19(4):7–9.

    HE Chengcai. Numerical modeling of the power-law fluid in a helical flow[J]. Drilling Fluid & Completion Fluid, 2002, 19(4): 7–9.

    [16]

    NOURI J M, WHITELAW J H. Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder[J]. International Journal of Heat and Fluid Flow, 1997, 18(2): 236–246. doi: 10.1016/S0142-727X(96)00086-0

    [17]

    FERROUDJI H, HADJADJ A, HADDAD A, et al. Numerical study of parameters affecting pressure drop of power-law fluid in horizontal annulus for laminar and turbulent flows[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 3091–3101. doi: 10.1007/s13202-019-0706-x

    [18]

    SALUBI V, MAHON R, OLUYEMI G. The combined effect of fluid rheology, inner pipe rotation and eccentricity on the flow of Newtonian and non-Newtonian fluid through the annuli[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110018. doi: 10.1016/j.petrol.2021.110018

    [19]

    COLEMAN B D, NOLL W. Helical flow of general fluids[J]. Journal of Applied Physics, 1959, 30(10): 1508–1512. doi: 10.1063/1.1734990

    [20]

    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[J]. Journal of Canadian Petroleum Technology, 2010, 49(12): 57–64. doi: 10.2118/141518-PA

    [21] 翟科军,于洋,何浪,等. 幂律流体螺旋层流流动压降简化模型[J]. 石油机械,2020,48(10):10–15.

    ZHAI Kejun, YU Yang, HE Lang, et al. Simplified pressure drop model for laminar helical flow of power law fluid[J]. China Petroleum Machinery, 2020, 48(10): 10–15.

    [22]

    SAYINDLA S, LUND B, YTREHUS J D, et al. CFD modeling of hydraulic behavior of oil- and water-based drilling fluids in laminar flow[J]. SPE Drilling & Completion, 2019, 34(3): 207–215.

    [23] 张晋凯,李根生,黄中伟,等. 不同偏心度的环空涡动流场特性[J]. 石油钻采工艺,2016,38(2):133–137.

    ZHANG Jinkai, LI Gensheng, HUANG Zhongwei, et al. Features of vortex flow fields in annuluses with different eccentricities[J]. Oil Drilling & Production Technology, 2016, 38(2): 133–137.

    [24]

    HACIISLAMOGLU M, LANGLINAIS J. Non-Newtonian flow in eccentric annuli[J]. Journal of Energy Resources Technology, 1990, 112(3): 163–169. doi: 10.1115/1.2905753

    [25] 王常斌,陈皖,田迪,等. 幂律流体偏心环空流场的CFD模拟[J]. 钻井液与完井液,2009,26(3):62–64.

    WANG Changbin, CHEN Wan, TIAN Di, et al. A CFD simulation of the flow field of a power law fluid in an eccentric annulus[J]. Drilling Fluid & Completion Fluid, 2009, 26(3): 62–64.

    [26] 蒋世全. 牛顿流体条件下偏心环空间隙雷诺数及层流区域方程研究[J]. 中国海上油气,2007,19(6):398–401.

    JIANG Shiquan. The study of eccentric annular clearance Reynolds number and laminar flow area equation under Newtonian fluid condition[J]. China Offshore Oil and Gas, 2007, 19(6): 398–401.

    [27]

    PATEL D. Modification of generalized hydraulic calculation method for non-Newtonian fluids in eccentric annuli[D]. Kingsville, Texas: Texas A & M University-Kingsville, 2006.

    [28]

    DOKHANI V, MA Yue, LI Zili, et al. Effects of drill string eccentricity on frictional pressure losses in annuli[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106853. doi: 10.1016/j.petrol.2019.106853

    [29]

    SULTAN R A, RAHMAN M A, RUSHD S, et al. CFD analysis of pressure losses and deposition velocities in horizontal annuli[J]. International Journal of Chemical Engineering, 2019, 2019: 7068989.

    [30] 宋先知,李根生,王梦抒,等. 连续油管钻水平井岩屑运移规律数值模拟[J]. 石油钻探技术,2014,42(2):28–32.

    SONG Xianzhi, LI Gensheng, WANG Mengshu, et al. Numerical simulation on cuttings carrying regularity for horizontal wells drilled with coiled tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28–32.

    [31]

    MADLENER K, FREY B, CIEZKI H. Generalized Reynolds number for non-Newtonian fluids[J]. Progress in Propulsion Physics, 2009, 1: 237–250.

    [32]

    AYENI K, OSISANYA S O. Evaluation of commonly used fluid rheological models using developed drilling hydraulic simulator[R]. PETSOC−2004−039, 2004.

    [33]

    VIEIRA NETO J L, MARTINS A L, ATAÍDE C H, et al. The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli[J]. Brazilian Journal of Chemical Engineering, 2014, 31(4): 829–838. doi: 10.1590/0104-6632.20140314s00002871

    [34]

    SORGUN M, OZBAYOGLU M E. Predicting frictional pressure loss during horizontal drilling for non-Newtonian fluids[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(7): 631–640. doi: 10.1080/15567030903226264

  • 期刊类型引用(8)

    1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
    2. 肖元相,解永刚,李明瑞,唐梅荣,陈宝春,周长静,邝聃,李达,苏煜彬,段志锋,刘欣佳. 铝土岩储层水平井完井分段压裂关键技术及应用——以鄂尔多斯盆地陇东地区太原组为例. 天然气地球科学. 2024(08): 1467-1479 . 百度学术
    3. 蔡东胜,孙梦慈,马洪亮,杨浩. 宁庆区块低固相阳离子聚合物钻井液技术研究与试验. 应用化工. 2024(12): 2832-2837 . 百度学术
    4. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    5. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    6. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    7. 赵宏波,季伟,王冲,李兴宝,陈国飞. 榆林气田标志层法和沉积旋回法水平井导向技术. 石油钻探技术. 2018(06): 39-46 . 本站查看
    8. 张时中. 三种钻井提速工具在陇东气田的应用研究. 河南科技. 2018(14): 115-117 . 百度学术

    其他类型引用(1)

图(19)  /  表(4)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  80
  • PDF下载量:  74
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2023-06-20
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回