Determination of Formation Fracture Pressure under High Temperature and High Pressure in Deep Water of the South China Sea
-
摘要:
我国南海北部深水地层欠压实程度高,具有胶结弱、承压能力低等力学特性,同时由于存在温度场,地层与钻井液之间的热交换会产生附加应力场,导致深水钻井过程中极易发生井漏,严重影响钻井效率和固井质量,亟需明确温度场对附加应力的影响。为此,笔者以弹性力学为基础,采用数值模拟方法,建立了考虑温度影响的井周应力分析模型;在现有地层破裂压力模型基础上,综合考虑温度及时间的影响,确定了南海深水环境下的地层破裂压力动态变化规律。分析结果表明:井壁和地层的温度变化幅度随着钻井液循环时间增长而逐渐增大,热附加应力也随着钻井液循环时间增长逐渐增大,最大径向热应力在距井眼中轴线一定距离处,最大切向应力和最大垂向应力均在井壁处;井壁温度降低时,井壁收缩产生拉应力;井壁温度降低时,井周应力也随之降低,切向应力和垂向应力在井壁处的降低幅度最大,径向应力降低幅度最大处在距井眼中轴1.65倍井眼半径处;考虑温度变化影响时的破裂压力偏差远低于不考虑温度变化影响时。研究结果表明,温度变化对井周应力有影响,预测地层破裂压力时考虑温度的影响可以提高其预测精度,从而提高钻井液安全密度窗口的预测精度,可为南海深水安全高效钻井提供理论指导。
Abstract:The deepwater strata in the northern South China Sea exhibit a high degree of under-compaction, weak cementation, low pressure-bearing capacity, and other mechanical characteristics. At the same time, due to the existence of a temperature field, the heat exchange between the formation and drilling fluid will produce an additional stress field, which will lead to lost circulation in the process of deepwater drilling and seriously affect the drilling efficiency and cementing quality. Therefore, it is urgent to clarify the influence of the temperature field on the additional stress. On the basis of elasticity, the numerical simulation method was used in this paper to establish an analytical model for periborehole stress with temperature considered. According to the existing formation fracture pressure model, the dynamic change law of formation fracture pressure in the deepwater environment of the South China Sea was determined by comprehensively considering the influence of temperature and time. The research results showed that a temperature change of the borehole wall and formation along with additional thermal stress gradually increased with the increase in the cycle time of the drilling fluid. Further, the maximum radial thermal stress was at a certain distance from the axis of the borehole, and the maximum tangential stress and the maximum vertical stress were at the borehole wall. When the temperature of the borehole wall decreased, the contraction of the borehole wall produced tensile stress and the periborehole stress decreased; the tangential stress and vertical stress decreased the most at the borehole wall, and the radial stress decreased the most at 1.65 times of the hole radius from the borehole axis. The deviation of fracture pressure considering the influence of temperature change was much lower than when not considering it. The research results show that temperature change has an impact on periborehole stress, and considering the influence of temperature can improve the prediction accuracy of formation fracture pressure, thus improving the prediction accuracy of the safety density window of the drilling fluid. This research can provide theoretical guidance for safe and efficient drilling in deepwater in the South China Sea.
-
-
表 1 L井地漏试验结果
Table 1 Leak off test results of Well L
井眼直径/
mm井深/m 钻井液密度/
(kg·L−1)地层破裂压力
当量密度/(kg·L−1)508.0 2 115.90 1.21 1.57 508.0 2 871.90 1.36 1.70 444.5 3 668.66 1.46 1.79 311.1 4 209.90 1.80 1.88 表 2 L井地层破裂压力预测误差分析
Table 2 Error analysis of formation fracture pressure prediction of Well L
井深/m 钻井液循环
时间/h破裂压力当量密度/(kg·L−1) 实测 考虑钻井液循环 不考虑钻井液循环 2115.90 2.00 1.57 1.59 1.55 2871.90 3.25 1.70 1.71 1.70 3668.66 2.75 1.79 1.79 1.86 4209.90 1.25 1.88 1.89 1.97 -
[1] 潘继平,金之均. 中国油气资源潜力及勘探战略[J]. 石油学报,2004,25(2):1–6. doi: 10.3321/j.issn:0253-2697.2004.02.001 PAN Jiping, JIN Zhijun. Potentials of petroleum resources and exploration strategy in China[J]. Acta Petrolei Sinica, 2004, 25(2): 1–6. doi: 10.3321/j.issn:0253-2697.2004.02.001
[2] 孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J]. 石油钻探技术,2015,43(4):1–6. SUN Baojiang, ZHANG Zhennan. Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1–6.
[3] 李中,方满宗,李磊. 南海西部深水钻井实践[J]. 石油钻采工艺,2015,37(1):92–95. LI Zhong, FANG Manzong, LI Lei. Drilling practices of deepwater well in West of South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 92–95.
[4] SUN Qiliang, WU Shiguo, CARTWRIGHT J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315/316/317/318: 1–14. doi: 10.1016/j.margeo.2012.05.003
[5] 方满宗,刘和兴,刘智勤,等. 南海西部深水高温高压钻井液技术研究与应用[J]. 中国海上油气,2017,29(1):89–94. FANG Manzong, LIU Hexing, LIU Zhiqin, et al. Research and applications of deep water HTHP drilling fluid in western South China Sea[J]. China Offshore Oil and Gas, 2017, 29(1): 89–94.
[6] 黄熠,杨进,王尔钧,等. 南海超高温高压气井裸眼完井测试关键技术[J]. 石油钻采工艺,2020,42(2):150–155. doi: 10.12358/j.issn.1001-5620.2021.04.005 HUANG Yi, YANG Jin, WANG Erjun, et al. Key technologies for the open hole completion testing of ultrahigh temperature and high pressure gas wells in the South China Sea[J]. Oil Drilling & Production Technology, 2020, 42(2): 150–155. doi: 10.12358/j.issn.1001-5620.2021.04.005
[7] 陈建国,邓金根,袁俊亮,等. 页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J]. 岩石力学与工程学报,2015,34(6):1101–1105. CHEN Jianguo, DENG Jingen, YUAN Junliang, et al. Determination of fracture toughness of modes I and II of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering., 2015, 34(6): 1101–1105.
[8] 高永德,董洪铎,胡益涛,等. 深水高温高压井钻井液当量循环密度预测模型及应用[J]. 特种油气藏,2022,29(3):138–143. GAO Yongde, DONG Hongduo, HU Yitao, et al. Prediction model of equivalent circulating density of drilling fluid in deep HPHT wells and its application[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 138–143.
[9] 李中,陈浩东,刘和兴,等. 深水窄密度窗口地层封堵承压钻井液技术[J]. 钻井液与完井液,2021,38(4):428–434. LI Zhong, CHEN Haodong, LIU Hexing, et al. Drilling fluid technology for plugging and strengthening formations with narrow mud weight windows in deep water drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 428–434.
[10] 王磊. 基于瞬态热流固耦合的钻井井壁稳定性分析[J]. 断块油气田,2023,30(2):331–336. WANG Lei. Wellbore stability analysis in drilling process based on transient thermo-fluid-solid coupling model[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 331–336.
[11] HUBBERT M K, WILLIS D G. Mechanics of hydraulic fractur-ing[J]. Transactions of the AIME, 1957, 210(1): 153–168.
[12] YUAN Junliang, ZHOU Jianliang, LIU Shujie, et al. An improved fracability-evaluation method for shale reservoirs based on new fracture toughness-prediction models[J]. SPE Journal, 2017, 22(5): 1704–1713. doi: 10.2118/185963-PA
[13] EATON B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10): 1353–1360. doi: 10.2118/2163-PA
[14] ANDERSON R A, INGRAM D S, ZANIER A M. Determining fracture pressure gradients from well logs[J]. Journal of Petroleum Technology, 1973, 25(11): 1259–1268. doi: 10.2118/4135-PA
[15] DAINES S R. The use of seismic data in the preparation of wells prognoses for wildcat wells[R]. SPE 10014, 1982.
[16] 吴江,李炎军,张万栋,等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):63–68. WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP Horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63–68.
[17] LEE S, REILLY J, LOWE R, et al. Accurate pore pressure and fracture pressure predictions using seismic velocities: an aid to deep water exploration and drilling design[R]. SEG-1997-2013, 1997.
[18] 刘玉石,周煜辉,黄克累. 井眼温度变化对井壁稳定的影响[J]. 石油钻采工艺,1996,18(4):1–4. LIU Yushi, ZHOU Yuhui, HUANG Kelei. Temperature of borehole effect on well wall wtability[J]. Oil Drilling & Production Technology, 1996, 18(4): 1–4.
[19] 罗鸣,吴江,陈浩东,等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8–12. LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-high temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8–12.
[20] ROCHA L A S, FALCÃO J L, GONÇALVES C J C, et al. Fracture pressure gradient in deepwater[R]. SPE 88011, 2004.
[21] 李嗣贵,邓金根,蔚宝华,等. 高温井地层破裂压力计算技术[J]. 岩石力学与工程学报,2005(增刊2):5669–5673. LI Sigui, DENG Jingen, YU Baohua, et al. Formation fracture pressure calculation in high temperatures wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(supplement2): 5669–5673.
[22] 邓金根,刘杨,蔚宝华,等. 高温高压地层破裂压力预测方法[J]. 石油钻探技术,2009,37(5):43–46. DENG Jingen, LIU Yang, YU Baohua, et al. Formation fracture pressure prediction method in high temperature and high pressure formations[J]. Petroleum Drilling Techniques, 2009, 37(5): 43–46.
[23] ORIJI A B, OGBONNA J F, A new fracture gradient prediction technique that shows good results in Gulf of Guinea wells[R]. SPE 161209, 2012.
[24] 田波,周建良,刘正礼,等. 南海深水探井破裂压力计算模型研究[J]. 化学工程与装备,2014(11):40–43. TIAN Bo, ZHOU Jianliang, LIU Zhengli, et al. Study on fracture pressure calculation model of South China Sea deepwater exploration wells[J]. Chemical Engineering & Equipment, 2014(11): 40–43.
[25] KINIK K, WOJTANOWICZ A K, GUMUS F, Temperature-induced uncertainty of the effective fracture pressures: assessment and control[R]. SPE 170316, 2014.
[26] 贾利春,陈东,黄兵. 温度对岩石力学特性及井壁稳定性的影响[J]. 钻采工艺,2017,40(5):15–18. JIA Lichun, CHEN Dong, HUANG Bing. Effects of temperature on rocks mechanics and wellbore stability[J]. Drilling & Production Technology, 2017, 40(5): 15–18.
[27] 曹文科,邓金根,谭强,等. 深水钻井热交换作用下的井壁稳定性分析[J]. 中国安全生产科学技术,2017,13(6):53–57. doi: 10.11731/j.issn.1673-193x.2017.06.008 CAO Wenke, DENG Jingen, TAN Qiang, et al. Analysis on stability of borehole under the effect of heat exchange in deepwater drilling[J]. Journal of Safety Science and Technology, 2017, 13(6): 53–57. doi: 10.11731/j.issn.1673-193x.2017.06.008
[28] 吴怡,谢仁军,刘书杰,等. 考虑温度效应的高温高压直井井壁稳定性规律[J]. 断块油气田,2019,26(2):253–256. doi: 10.6056/dkyqt201902025 WU Yi, XIE Renjun, LIU Shujie, et al. Wellbore stability rule of high temperature and high pressure vertical well considering temperature effect[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 253–256. doi: 10.6056/dkyqt201902025
[29] AHMED S A, MAHMOUD A A, ELKATATNY S, et al. Prediction of pore and fracture pressures using support vector machine[R]. IPTC 19523, 2019.
[30] 徐芝纶. 弹性力学: 上册[M]. 4版. 北京: 高等教育出版社, 2006. XU Zhilun. Elasticity mechanics: volume 1[M]. 4th ed. Beijing: Higher Education Press, 2006.
[31] 李忠慧,赵毅,楼一珊,等. 海洋深水井钻井过程中井筒温度的变化规律[J]. 天然气工业,2019,39(10):88–94. LI Zhonghui, ZHAO Yi, LOU Yishan, et al. Changing laws of wellbore temperature during offshore deepwater well drilling.[J]. Natural Gas Industry, 2019, 39(10): 88–94.
-
期刊类型引用(14)
1. 赵楠,李万渠,冯金钰,王奕儒,李丽. 多裂纹对裂纹搭接规律影响数值模拟及机理研究. 钻采工艺. 2022(02): 160-164 . 百度学术
2. 张瑞萍,祝云,窦益华,杨晓儒,李明飞. 基于FLAC~(3D)的压裂工况下地应力重新分布规律研究. 石油机械. 2021(08): 91-99 . 百度学术
3. 何其胜,王贵君. 砂砾岩水压致裂机理及数值仿真研究. 三峡大学学报(自然科学版). 2020(06): 45-49 . 百度学术
4. 尉雪梅,吴飞鹏,刘恒超,徐尔斯,张艳玉,蒲春生. 燃爆压裂井井周诱导应力分布规律. 中国石油大学学报(自然科学版). 2018(01): 105-112 . 百度学术
5. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
6. 吴飞鹏,徐尔斯,尉雪梅,刘恒超,李德,丁乾申. 燃爆诱导水力压裂多裂缝耦合起裂规律. 天然气工业. 2018(11): 65-72 . 百度学术
7. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 . 百度学术
8. 彭瑀,李勇明,赵金洲. 考虑任意压力分布的裂缝诱导应力场计算模型及其应用. 中国石油大学学报(自然科学版). 2017(03): 92-97 . 百度学术
9. 李玮,纪照生. 暂堵转向压裂机理有限元分析. 断块油气田. 2016(04): 514-517 . 百度学术
10. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 . 百度学术
11. 李玉梅,吕炜,宋杰,李军,杨宏伟,于丽维. 层理性页岩气储层复杂网络裂缝数值模拟研究. 石油钻探技术. 2016(04): 108-113 . 本站查看
12. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
13. 李士斌,官兵,张立刚,陈双庆,王业强. 水平井压裂裂缝局部应力场扰动规律. 油气地质与采收率. 2016(06): 112-119 . 百度学术
14. 林飞,盛萍,李春颖. 煤层气藏水平井分段压裂裂缝参数优化. 中州煤炭. 2016(02): 126-128 . 百度学术
其他类型引用(7)