川西气田雷四段白云岩储层流动单元测井评价方法

葛祥, 温丹妮, 叶泰然, 张卫峰, 张世懋

葛祥,温丹妮,叶泰然,等. 川西气田雷四段白云岩储层流动单元测井评价方法[J]. 石油钻探技术,2023, 51(6):120-127. DOI: 10.11911/syztjs.2023049
引用本文: 葛祥,温丹妮,叶泰然,等. 川西气田雷四段白云岩储层流动单元测井评价方法[J]. 石油钻探技术,2023, 51(6):120-127. DOI: 10.11911/syztjs.2023049
GE Xiang, WEN Danni, YE Tairan, et al. Logging evaluation method of flow units in a dolomite reservoir in the 4th member of the Leikoupo Formation in Western Sichuan Gas Field [J]. Petroleum Drilling Techniques,2023, 51(6):120-127. DOI: 10.11911/syztjs.2023049
Citation: GE Xiang, WEN Danni, YE Tairan, et al. Logging evaluation method of flow units in a dolomite reservoir in the 4th member of the Leikoupo Formation in Western Sichuan Gas Field [J]. Petroleum Drilling Techniques,2023, 51(6):120-127. DOI: 10.11911/syztjs.2023049

川西气田雷四段白云岩储层流动单元测井评价方法

基金项目: 国家科技重大专项“高放射缝洞性储层测井评价方法”(编号:2017ZX05005-005-010)和中国石化集团公司科技攻关项目“川西海相缝洞储层测井评价技术研究”(编号:JP17043)部分研究内容。
详细信息
    作者简介:

    葛祥(1970—),男,四川成都人,1992年毕业于长春地质学院矿场地球物理专业,2006年获成都理工大学地质工程专业工程硕士学位,正高级工程师,主要从事测井解释与储层评价研究。E-mail:gexiang.osjw@sinopec.com

  • 中图分类号: P631.8+1

Logging Evaluation Method of Flow Units in a Dolomite Reservoir in the 4th Member of the Leikoupo Formation in Western Sichuan Gas Field

  • 摘要:

    川西气田雷口坡组四段白云岩储层开发井型以大斜度井、水平井为主,主要依靠声波时差和二维核磁共振测井资料获得储层信息,储层评价和流动单元评价难度较大。基于关键直井的沉积相、岩心试验数据和储层对比方法,利用测井资料将雷四段储层划分为4类流动单元,利用核磁共振测井资料构建伪毛细管压力曲线,以拟合度较高的中值压力、排驱压力作为中间参数,计算出偏离程度系数(S指数和T指数),作为定量评价储层孔隙结构的参数,并建立了雷四段储层4类流动单元划分标准。S指数、T指数结合孔隙度、渗透率等参数,实现了沿水平井筒连续、准确评价白云岩储层孔隙结构和定量区分流动单元的目的。白云岩储层流动单元测井评价方法为同类储层水平井评价和开发方案编制提供了技术参考。

    Abstract:

    The dolomite reservoir of the 4th member of the Leikoupo Formation in Western Sichuan gas field primarily has highly-deviated wells and horizontal wells, and reservoir information is obtained principally by means of interval transit time and two-dimensional magnetic resonance imaging (NMR) logging data. Therefore, it is difficult to evaluate the reservoir and flow units. Based on the sedimentary facies, core experimental data, and reservoir comparison methods of key vertical wells, the reservoir of the 4th member of the Leikoupo Formation was divided into four types of flow units as determined by logging data. The pseudo-capillary pressure curve was constructed by NMR logging data. The high-fitness median pressure and displacement pressure were taken as intermediate parameters, and the coefficients of deviation degree (S index and T index) based on the median pressure and displacement pressure were established as parameters for quantitatively evaluating the reservoir’s pore structure. In addition, the classification criteria of the four types of flow units in the reservoir were established. The S index and T index were combined with porosity, permeability, and other parameters for continuously and accurately evaluating the pore structure of the dolomite reservoir along the horizontal wellbore and quantitatively distinguishing flow units. The logging evaluation method of flow units in the dolomite reservoir provides a technical reference for evaluation and development planning for horizontal wells in similar reservoirs.

  • 世界能源消耗量不断增长,对环境的影响日益凸显,对环境保护提出了更高要求。煤炭等常规资源在使用过程中会对大气环境产生一定影响,进而影响人们的日常生活和身体健康。天然气水合物作为一种新型清洁能源,如果能够进行商业化开采并应用于工业生产和日常生活,将会提高人们生活的环境质量。天然气水合物是天然气与水在高压、低温条件下形成的类似冰状的结晶物质,因其外观像冰,遇火可燃烧,所以又被称为“可燃冰”、“固体瓦斯”或者“气冰”[1]。天然气水合物主要埋藏在海洋深水海底地层、大陆永久冻土、岛屿的斜坡地带、大陆边缘的隆起处、极地大陆架及内陆湖的深水湖底地层内[17]。研究认为,天然气水合物中碳的总量约为当前已探明所有化石燃料(包括煤、石油和天然气)中碳总量的2倍[8]

    目前,天然气水合物的开采还处于勘探、试采和小规模开采阶段[9],进展缓慢的主要原因是对天然气水合物的开采方式还没有达成共识,主要是担心开采过程中天然气水合物会瞬间大规模气化,对环境造成灾难性的影响。为此,笔者分析了天然气水合物开采过程中的环境安全问题,从天然气水合物气化开采原理、开采实践等方面探讨了天然气水合物开采的低速性和环境安全性。

    海底天然气水合物从海底开采出来过程中,可能会破坏海底的稳定性和海洋生态环境等,甚至影响到整个海洋生态系统的平衡和稳定性。目前,开采海底天然气水合物时人们普遍担心的主要有海底天然气水合物瞬间大规模气化、破坏海洋生态环境、加剧全球变暖、产生海底地质灾害等问题。

    1)海底天然气水合物的瞬间大规模气化。一些学者认为天然气水合物一旦被开采,将无法控制,会出现天然气水合物大规模瞬间气化的情况[10]。具体的认识是:开采天然气水合物的过程涉及外来工具或能量的介入,天然气水合物在海底的稳定状态将被破坏,由介入点开始逐步蔓延扩大,大面积的天然气水合物受到影响,可能出现瞬间大规模气化的情况;海底产生的大量气体,会使海水发生大幅度的波动,产生类似于海底地震的效果。

    2)破坏海洋生态环境。在开采天然气水合物的过程中,部分天然气会通过海底土壤孔隙向水体中泄露,破坏海洋生态环境。进入海水中的天然气,在水体中氧气充分的情况下,大部分会与氧气反应生成二氧化碳;生成的二氧化碳在海底可以溶解碳酸盐矿物;没有反应的天然气和二氧化碳继续向上运移,部分二氧化碳在靠近海面时会被海水中的浮游植物转化为氧气;剩余的天然气和二氧化碳会逸出海面进入大气层。天然气对海洋生态的破坏主要是对海水中氧气的消耗,而氧气被消耗又是导致海洋生物灭绝的直接原因。因此,部分专家学者认为天然气水合物的开采必将影响到海洋生态平衡,导致部分海洋生物的灭绝[1112]

    3)加剧全球变暖。一些学者认为天然气水合物分解产生的天然气(主要成分是甲烷)与二氧化碳一样,也是温室气体,并且同质量甲烷产生的温室效应是二氧化碳的20~30倍,因此担心天然气水合物开采过程中会有大量天然气泄露到空气中,对现有大气的组成造成恶劣影响,加剧全球变暖,改变全球气候[1112]

    4)产生海底地质灾害。分析已有试采结果后认为,海底的天然气水合物增大了附近沉积物储层的机械强度。如果天然气水合物分解为游离气和孔隙水,将会使沉积物储层的地质力学稳定性大幅度降低[1315],而地层岩土强度降低是天然气水合物开采中可能造成地质灾害(如海床塌陷、海底滑坡)的根本原因。

    天然气水合物处于稳定状态的温度压力条件是一定的,可由相平衡曲线确定,稳定状态下的温度为0~10 ℃,压力在10 MPa以上。通过应用工程技术措施破坏天然气水合物的稳定状态,使其不断分解,这是目前天然气水合物开采方法的基本原理。由于天然气水合物的动力学问题尚未研究清楚,许多开采技术和工艺还只能停留在试验阶段。

    天然气水合物以固态形式埋藏在海底储层中,开采过程中会发生相态的变化,从固体转变成气体和水[16]。天然气水合物的分解热为54.67 kJ/mol[15]。在井筒中向上流动的同时,随着压力的降低,体积膨胀,需要吸热。对热量的吸收是天然气水合物开采中需要重点考虑的因素。目前,天然气水合物常规开采方法主要有降压开采、化学剂注入开采和热力开采[1725]

    降压开采法是通过降低天然气水合物储层的压力,使天然气水合物的相平衡点产生变动,从而使其分解。传统意义上的降压方式主要有2种[19]:1)抽出井筒内的液体或降低井筒内液体的密度来降压;2)泵出天然气水合物层下方的游离气体或者其他流体,达到降低天然气水合物层压力的目的。降压开采天然气水合物时不需要注入太多人工能量,所需要的能量主要是地层内部的热流。由于没有人工热源供热,只利用地层温度提供热量,单一使用降压法开采天然气水合物的速度是缓慢的。降压法对于储层温度太低(接近或者低于0 ℃)的天然气水合物藏并不适用,主要原因是低于0 ℃时水可能以冰的形式存在。冰的存在会对天然气水合物的气化以及气态天然气的输送产生一定影响。

    化学剂注入法[8]主要是通过向天然气水合物储层中注入盐水、甲醇、乙醇、乙二醇或丙三醇等化学剂,破坏天然气水合物分子间的氢键,改变温度和孔隙压力,使天然气水合物的相平衡条件发生变化,从而分解为天然气和水。该方法存在化学药剂价格昂贵、作用过程比较缓慢、可能造成环境污染的问题。

    热力开采是通过钻井技术在稳定的天然气水合物储集层中安装管道,利用管道对地层进行加热,提高管道附近储集层的温度,促进天然气水合物不断分解。热力开采法的不足之处是热损失大,热效率低。

    由以上分析可知,在天然气水合物开采过程中,热量的供给是至关重要的因素。在压力一定的条件下,只有热量供给充足,天然气水合物才能不断分解出气态天然气;若热量供给不足,天然气产量就会降低;一旦热量供给停止,将不再分解产生天然气。

    针对于常规开采方法的不足,周守为、伍开松等人[2629]提出了海底天然气水合物固态流化开采方法,基本流程如图1所示。

    图  1  深水浅层非成岩天然气水合物固态流化开采示意[29]
    Figure  1.  Schematic diagram of solid-state fluidized exploitation of deep-water shallow layer non-diagenetic gas hydrates[29]

    该方法的基本原理是:首先利用天然气水合物在海底温度和压力条件下的稳定性,采用机械办法将地层中的固态天然气水合物碎化;然后在海底进行分离、分解;最后将分离、分解后的含气水合物浆体举升到水面工程船,分离后的固体岩屑排放在海底。具体施工流程为[26]:海洋钻井钻至天然气水合物目的层后,采用钻杆固井方式固井,并在钻杆中下入连续油管钻穿井底钻头,再采用喷射短节在井底射流破碎天然气水合物至细小颗粒,并将天然气水合物颗粒携带出井筒,最后分离出天然气。固态流化方法在技术上是可行的,但存在着不足,即在开采过程中需要一直进行采矿作业,这与常规的油气开采有很大区别。对于常规油气,钻井完井结束后主要依靠地层的渗流进行开采,后期可能需要人工举升方式的辅助,但不需要一直对地层进行破碎施工。持续钻进需要钻进设备的不断运行,大大增加了开采成本,导致商业应用前景不太乐观。

    天然气水合物的开采过程并不是一个迅速的过程,需要能量的补充和缓慢的气化。笔者认为,在现有开采水平下,天然气水合物的开采是低速的、环境是安全的。

    开采过程中,由于天然气水合物的气化和气态天然气的膨胀,不断吸热,会在开采井附近形成低温区,并且随着开采时间增长,低温区会越来越大,核心区的温度越来越低(见图2)。温度的持续降低和低温区的不断扩大,一方面会使天然气水合物的气化速度变慢,另一方面会使地层能量传递到开采井附近的速度变慢,导致产量逐步降低。2017年,我国在南海进行了天然气水合物降压法开采试验,初期产量很高,后期产量低。截至关井,连续试采60 d,累计产气量超过30×104 m3,平均日产气量5 000 m3以上,最高日产气量达3.5×104 m3[30]

    图  2  开采过程中井筒附近低温区示意
    Figure  2.  Schematic diagram of the low temperature zone near wellbore during the exploitation process

    在无人工供热条件下,采用降压开采法等方法开采天然气水合物时,天然气水合物分解所需热量只能由地层提供,而地层的导热系数一般比较小。国内一些学者对黏土、砂土的导热系数做过相关研究,结果表明,黏土、砂土的导热系数随着含水率升高先增大再减小,在含水率为25%左右时达到最大值,黏土、砂土的最大导热系数分别约为1.543和1.335 W/(m·K)[3135]。因此,天然地层热量的供给是一个缓慢的过程,制约了天然气水合物分解的速度,造成天然气水合物在降压开采条件下不会持续高产[3637]。随着孔隙压力的降低,储层慢慢沉降、压实,孔隙度和渗透率降低,产量也随之降低。

    天然气水合物类似一种含天然气的冰或雪,冰或雪不会出现大规模的突然汽化,只会随着环境的改变发生缓慢的变化。因此,天然气水合物也不会出现大规模、失控的气化。

    天然气水合物气化并顺利进入井筒的前提条件是井筒内的压力低于储层的原始压力。生产井井筒内产生一个与储层连通的低压区,气化后的天然气水合物在压力作用下,主要向井筒内移动,进入海水中的天然气会由于压力作用而减少。因此,正常生产时进入海水中的天然气与开采之前相比只会减少,而不会增加。

    海底之下天然气水合物分解后产生的一些流体组分从海底表面溢出,从而形成冷泉,如图3所示。之所以称其为冷泉,是因为天然气水合物分解产生气态天然气和气态天然气膨胀过程中均需要吸收大量的热量,从而降低了周围环境的温度。同时,由于海底表面溢出的流体中含有甲烷、硫化氢等组分,可为一些海底微生物提供足够的养分[38],冷泉区域一般都是深海海底生命比较活跃的地方。与海底其他区域相比,冷泉好像“沙漠中的绿洲”。冷泉周围能够形成生物群落,表明地层将热量传到气化界面的速度是很慢的,天然气水合物在天然能量条件下不会剧烈、迅速地分解,而是缓慢、持续地分解。

    图  3  海底冷泉及生物群落示意
    Figure  3.  Schematic diagram of subsea cold springs and biomes

    天然气水合物的开采对海洋生物的影响主要体现在以下2方面:

    1)海底冷泉附近存在生物群落,说明天然气的少量逸出有利于海底生物群落的形成;

    2)海水中如果只存在氧气,而没有天然气等有机物质,许多物种将因为缺少食物供给而面临灭绝。

    在海洋生态环境中,只有海水、氧气和天然气等均存在的情况下,才能达到一个平衡状态。天然气水合物的开采原理决定了泄漏于海水中的天然气量并不大,有时可能会减少冷泉的气量,但减少数量有限。因此,现有技术水平下天然气水合物的低速开采,不会对海洋生态环境产生太大影响。

    天然气水合物的开采与其他矿产的开采一样,都会对环境产生一定的负面作用,如海床塌陷、海底滑坡,均属于常规灾害。由于海底情况的复杂性,此类灾害存在一定的不可控性,且是不可避免的,但对环境的危害不大。

    1)天然气水合物作为一种比较清洁的能源,可以安全开采和利用。

    2)天然气水合物在开采过程中由固态转变为气态和液态,发生相态变化和气体体积的膨胀需要大量的热。受地层供热速度的制约,天然气水合物的开采具有低速性。

    3)天然气水合物的开采会对环境产生一定影响,但不会爆发大规模、无控制的气化,也不会对海洋水体、海洋生态环境和大气产生严重影响,只可能发生海床塌陷、海底滑坡等常规灾害。因此,开采天然气水合物对环境危害不大,可认为是安全的。

  • 图  1   31911号岩样进汞压力与孔喉半径的关系

    Figure  1.   Relationship between mercury inlet pressure and pore throat radius of Sample 31911

    图  2   31911号岩样核磁共振T2谱与压汞实验孔喉分布曲线对比

    Figure  2.   Comparison of NMR T2 spectrum and pore throat distribution curves by mercury injection experiment of Sample 31911

    图  3   31911号岩样伪毛细管压力曲线与压汞实验毛细管压力曲线对比

    Figure  3.   Comparison of pseudo-capillary pressure curve and mercury injection experiment capillary pressure curve of sample 31911

    图  4   偏离程度指数函数图

    Figure  4.   Exponential function diagram of deviation degree

    图  5   T=2时不同S指数的偏离程度曲线

    Figure  5.   Curves of deviation degree under different S indexes at T = 2

    图  6   S=0.04时不同T指数的偏离程度曲线

    Figure  6.   Curves of deviation degree under different T indexes at S = 0.04

    图  7   S指数–T指数交会图

    Figure  7.   S index-T index intersection

    图  8   YS1井储层流动单元划分结果

    Figure  8.   Classification result of reservoir flow units in Well YS1

    图  9   PZ3-4D井储层流动单元划分成果

    Figure  9.   Classification results of reservoir flow units in Well PZ3-4D

    表  1   雷四上亚段储层流动单元地质特征

    Table  1   Geological characteristics of reservoir flow units in the upper part of the 4th member of Leikoupo Formation

    流动
    单元
    岩性孔隙度,%渗透率/mD排驱压力/MPa中值压力/MPa最大进汞
    饱和度,%
    孔渗特征储集空间类型
    Ⅰ类 藻白云岩、白云岩2.3~9.40.59~80.200.07~0.700.08~2.20≥75中—低孔高渗 裂缝、溶蚀孔洞
    Ⅱ类 藻粘结白云岩、含
    灰白云岩
    2.2~19.80.01~13.820.20~1.002.00~7.00≥80中—高孔中渗 粒间溶孔、晶间溶孔
    Ⅲ类 灰质白云岩、白云
    质灰岩
    0.3~3.40.02~65.40<0.020.10~10.00≥75低孔中—高渗 构造缝、溶蚀缝
    Ⅳ类 残余藻粘结白云
    岩、藻纹层白云岩、
    微—细晶白云岩
    2.0~9.20~0.200.70~2.007.00~30.0050~90中—低孔低渗 不规则溶孔、孤立溶孔
    基岩 灰岩、白云质灰岩0.5~2.00~0.09≥2.00≤50极低孔极低渗
    下载: 导出CSV

    表  2   研究区储层流动单元划分标准

    Table  2   Classification criteria of reservoir flow units in the study area

    流动单元岩性S指数T指数
    Ⅰ类 藻白云岩、白云岩<0.0250.05~0.73
    Ⅱ类 藻粘结白云岩、含灰白云岩0.025~0.1000.05~0.80
    Ⅲ类 灰质白云岩、白云质灰岩>0.040<0.05
    Ⅳ类 残余藻粘结白云岩、藻纹层
    白云岩、微—细晶白云岩
    0.025~0.100>0.73
    下载: 导出CSV
  • [1] 李书兵,许国明,宋晓波. 川西龙门山前构造带彭州雷口坡组大型气田的形成条件[J]. 中国石油勘探,2016,21(3):74–82. doi: 10.3969/j.issn.1672-7703.2016.03.007

    LI Shubing, XU Guoming, SONG Xiaobo. Forming conditions of Pengzhou large gas field of Leikoupo Formation in Longmenshan piedmont tectonic belt, western Sichuan Basin[J]. China Petroleum Exploration, 2016, 21(3): 74–82. doi: 10.3969/j.issn.1672-7703.2016.03.007

    [2] 许国明,宋晓波,冯霞,等. 川西地区中三叠统雷口坡组天然气勘探潜力[J]. 天然气工业,2013,33(8):8–14. doi: 10.3787/j.issn.1000-0976.2013.08.002

    XU Guoming, SONG Xiaobo, FENG Xia, et al. Gas potential of the Middle Triassic Leikoupo Fm in the western Sichuan Basin[J]. Natural Gas Industry, 2013, 33(8): 8–14. doi: 10.3787/j.issn.1000-0976.2013.08.002

    [3] 李宏涛,胡向阳,史云清,等. 四川盆地川西坳陷龙门山前雷口坡组四段气藏层序划分及储层发育控制因素[J]. 石油与天然气地质,2017,38(4):753–763. doi: 10.11743/ogg20170412

    LI Hongtao, HU Xiangyang, SHI Yunqing, et al. Sequence division and controlling factors of reservoir development of the 4th Member of Leikoupo Formation in foreland of Longmen mountains in the western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(4): 753–763. doi: 10.11743/ogg20170412

    [4] 四川油气区石油地质志编写组. 中国石油地质志: 卷十: 四川油气区[M]. 北京: 石油工业出版社, 1989.

    Compilation Group of Petroleum Geological Records of Sichuan Oil and Gas Region. Geological records of china petroleum: volume 10: Sichuan oil and gas region[M]. Beijing: Petroleum Industry Press, 1989.

    [5] 田瀚,唐松,张建勇,等. 川西地区中三叠统雷口坡组储层特征及其形成条件[J]. 天然气地球科学,2018,29(11):1585–1594. doi: 10.11764/j.issn.1672-1926.2018.08.010

    TIAN Han, TANG Song, ZHANG Jianyong, et al. Characteristics and formation conditions of carbonate reservoir in Leikoupo Formation of western Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(11): 1585–1594. doi: 10.11764/j.issn.1672-1926.2018.08.010

    [6] 李蓉,许国明,宋晓波,等. 川西坳陷雷四3亚段储层控制因素及孔隙演化特征[J]. 东北石油大学学报,2016,40(5):63–74. doi: 10.3969/j.issn.2095-4107.2016.05.008

    LI Rong, XU Guoming, SONG Xiaobo, et al. Reservoir characteristics and control factors of the third period of the forth Leikoupo Formation in western Sichuan Depression[J]. Journal of Northeast Petroleum University, 2016, 40(5): 63–74. doi: 10.3969/j.issn.2095-4107.2016.05.008

    [7]

    AMAEFULE J O, ALTUNBAY M, TIAB D, et al. Enhanced reservoir description: Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[R]. SPE 26436, 1993.

    [8] 王猛,董宇,张志强,等. 高精度流动单元分类方法及应用[J]. 断块油气田,2022,29(1):89–94.

    WANG Meng, DONG Yu, ZHANG Zhiqiang, et al. High-precision classification method and application of flow unit[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 89–94.

    [9] 周游,李治平,景成,等. 基于 “岩石物理相-流动单元” 测井响应定量评价特低渗透油藏优质储层:以延长油田东部油区长6油层组为例[J]. 岩性油气藏,2017,29(1):116–123.

    ZHOU You, LI Zhiping, JING Cheng, et al. Quantitative evaluation of favorable reservoir in ultra-low permeable reservoir based on “petrophysical facies-flow unit” log response: a case study of Chang 6 oil reservoir set in Yanchang Oilfield[J]. Lithologic Reser- voirs, 2017, 29(1): 116–123.

    [10] 郭子南. 兴隆台潜山基岩油藏储层分类评价[J]. 特种油气藏,2022,29(2):64–71. doi: 10.3969/j.issn.1006-6535.2022.02.009

    GUO Zinan. Classification and evaluation of bedrock reservoirs in Xinglongtai buried hill[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 64–71. doi: 10.3969/j.issn.1006-6535.2022.02.009

    [11] 曾少军,何胜林,王利娟,等. 基于流动单元的测井储层参数精细建模技术:以崖城13-1气田陵三段为例[J]. 天然气工业,2011,31(8):12–15. doi: 10.3787/j.issn.1000-0976.2011.08.003

    ZENG Shaojun, HE Shenglin, WANG Lijuan, et al. Refined modeling of logging reservoir parameters based on flow units: a ease study of the 3rd member of the Lingshui Formation in the Yacheng 13-1 Gas Field[J]. Natural Gas Industry, 2011, 31(8): 12–15. doi: 10.3787/j.issn.1000-0976.2011.08.003

    [12] 何雨丹,毛志强,肖立志,等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报(地球科学版),2005,35(2):177–181.

    HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University(Earth Science Edition), 2005, 35(2): 177–181.

    [13] 王迪,程洪亮,丁蔚楠,等. 潮坪相白云岩储层核磁共振扩散耦合效应:以四川盆地龙门山山前带中三叠统雷四上亚段为例[J]. 天然气工业,2022,42(12):44–55.

    WANG Di, CHENG Hongliang, DING Weinan, et al. NMR diffusion coupling effect in tidal-flat dolomite reservoirs: a case study of upper Lei-4 Member of Middle Triassic in the Longmenshan Piedmont Zone, Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12): 44–55.

    [14]

    GAO Hui, LI Huazhou. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance (NMR) technique[J]. Journal of Petroleum Science and Engineering, 2015, 133: 258–267. doi: 10.1016/j.petrol.2015.06.017

    [15] 刘佳玮. 鄂尔多斯盆地志丹南部奥陶系岩溶储层物性及孔隙结构特征[J]. 地下水,2017,39(2):217–219. doi: 10.3969/j.issn.1004-1184.2017.02.086

    LIU Jiawei. Physical properties and pore structure of Ordovician karst reservoir in southern Zhidan, Ordos Basin[J]. Ground Water, 2017, 39(2): 217–219. doi: 10.3969/j.issn.1004-1184.2017.02.086

    [16] 何传亮,康建云,王辛,等. 基于沉积微相-储集空间类型的储集层流动单元划分:以彭州气田雷口坡组碳酸盐岩储集层为例[J]. 新疆石油地质,2020,41(4):435–443.

    HE Chuanliang, KANG Jianyun, WANG Xin, et al. Reservoir flow unit division based on sedimentary microfacies-reservoir space type: a case of carbonate reservoir of Leikoupo Formation in Pengzhou Gas Field[J]. Xinjiang Petroleum Geology, 2020, 41(4): 435–443.

    [17] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998.

    XIAO Lizhi. Nuclear magnetic resonance imaging logging and rock nuclear magnetic resonance and their applications[M]. Beijing: Science Press, 1998.

    [18] 运华云,赵文杰,刘兵开,等. 利用T2分布进行岩石孔隙结构研究[J]. 测井技术,2002,26(1):18–21. doi: 10.3969/j.issn.1004-1338.2002.01.005

    YUN Huayun, ZHAO Wenjie, LIU Bingkai, et al. Researching rock pore structure with T2 distribution[J]. Well Logging Technology, 2002, 26(1): 18–21. doi: 10.3969/j.issn.1004-1338.2002.01.005

    [19] 刘堂宴,马在田,傅容珊. 核磁共振谱的岩石孔喉结构分析[J]. 地球物理学进展,2003,18(4):737–742. doi: 10.3969/j.issn.1004-2903.2003.04.026

    LIU Tangyan, MA Zaitian, FU Rongshan. Analysis of rock pore structure with NMR spectra[J]. Progress in Geophysics, 2003, 18(4): 737–742. doi: 10.3969/j.issn.1004-2903.2003.04.026

  • 期刊类型引用(14)

    1. 陈雅辉,匡立新,龙志平,陈士奎,王恒. NC页岩气田东胜构造带浅表层防漏治漏工艺. 石油地质与工程. 2023(03): 102-105 . 百度学术
    2. 陆长青,高元,杨广国,彭金龙. 基于温敏形状记忆聚合物的堵漏水泥浆体系研究. 钻采工艺. 2023(03): 141-146 . 百度学术
    3. 曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议. 石油钻探技术. 2023(04): 66-73 . 本站查看
    4. 吴天乾,宋文宇,谭凌方,张军义,杨春文,郭胜来. 超低密度水泥固井质量评价方法. 石油钻探技术. 2022(01): 65-70 . 本站查看
    5. 谢关宝. 轻质水泥浆固井质量测井评价标准构建. 石油钻探技术. 2022(01): 119-126 . 本站查看
    6. 袁光杰,付利,王元,郭凯杰,陈刚. 我国非常规油气经济有效开发钻井完井技术现状与发展建议. 石油钻探技术. 2022(01): 1-12 . 本站查看
    7. 匡立新,刘奎,丁士东,初永涛,周仕明,姜政华,肖京男. 机械充氮泡沫水泥浆固井技术在页岩气井的应用. 石油机械. 2022(07): 26-33 . 百度学术
    8. 王建云,张红卫,邹书强,李明军,王鹏. 顺北油气田低压易漏层泡沫水泥浆固井技术. 石油钻探技术. 2022(04): 25-30 . 本站查看
    9. 路飞飞,于洋,王伟志,李明军. 顺北油气田防漏固井用封隔式分级箍研制与应用. 石油钻探技术. 2022(04): 31-36 . 本站查看
    10. 陈晓华,狄伟. 针对裂缝性地层的低密度高强度韧性水泥浆体系研究. 钻井液与完井液. 2021(01): 109-115 . 百度学术
    11. 吴天乾,李明忠,李建新,李德红,张军义,何斌斌. 杭锦旗地区正注反挤固井技术研究. 钻采工艺. 2021(03): 104-107 . 百度学术
    12. 张辉. 超低密度水泥浆的复合减轻剂研究及应用. 重庆科技学院学报(自然科学版). 2020(03): 7-10+43 . 百度学术
    13. 陈铧. 封固气层的泡沫水泥浆固井技术研究. 中国石油和化工标准与质量. 2019(10): 213-214 . 百度学术
    14. 林四元,张杰,韩成,胡杰,田宗强,郑浩鹏. 东方气田浅部储层大位移水平井钻井关键技术. 石油钻探技术. 2019(05): 17-21 . 本站查看

    其他类型引用(2)

图(9)  /  表(2)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  81
  • PDF下载量:  48
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-04-04
  • 网络出版日期:  2023-05-21
  • 刊出日期:  2023-11-24

目录

/

返回文章
返回