The Course of Development and the Future of Wellsite NMR Technologies and Their Applications
-
摘要:
井场核磁共振技术在近20年得到快速发展,在石油钻探和开采中发挥了重要作用。井场核磁共振是指在油气钻探现场复杂恶劣环境下所开展的核磁共振测量、分析及应用,涉及基础理论、测量仪器、数据采集与处理、解释应用等多个方面。我国科技工作者经过数十年持续攻关,走过“引进—吸收—集成创新—原始创新”的发展之路,形成了适合陆相油气的核磁共振测量分析技术,并进行了工业应用,在若干新颖及前瞻领域形成了丰富的储备技术。在系统总结国外及我国井场核磁共振理论、方法及仪器技术的发展历程和关键突破的基础上,展望了井场核磁共振技术在复杂油气、页岩油气等勘探开发中的应用前景和挑战,以进一步推动我国页岩油气及深层复杂油气的勘探开发水平和进程。
Abstract:Wellsite nuclear magnetic resonance (NMR) technologies have developed rapidly in the past 20 years and have played an important role in oil and gas drilling and exploitation. They refer to the NMR measurement, analysis, and application carried out in complex and harsh environments of oil and gas drilling sites, which involve multiple aspects such as basic theory, measurement instruments, data acquisition and processing, and interpretation and application. In the past decades, Chinese scientists and researchers have made continuous efforts to tackle the challenges, going through the development course of “introduction, absorption, integrated innovation, and initial innovation.” As a result, the NMR measurement and analysis technologies suitable for continental oil and gas are developed and industrial applications are achieved, and rich technical reserves are formed in several novel and forward-looking fields. This paper systematically summarized the development course of wellsite NMR theory, methods, instruments, and technologies in and outside China as well as the key breakthroughs in these aspects. On this basis, it gave the application prospects and challenges of wellsite NMR technologies in the exploration and development of complex oil and gas and shale oil and gas. The research is expected to promote the exploration and development level and progress of shale oil and gas and deep complex oil and gas in China.
-
鄂尔多斯盆地东部气田位于伊陕斜坡东部近南北向的次级隆起带,受海水振荡及中央古隆起的阻隔影响,沉积为腐泥型有机质类型的古隆起奥陶系海相盐下碳酸盐烃源岩气藏[1-5]。随着对该气田地质构造认识的不断深入和工程技术水平的不断提升,2021年,MT1井试气获得35.2×104 m3高产工业气流,奥陶系海相盐下碳酸盐岩复杂气层勘探开发获得新突破。但是,该井在钻进奥陶系碳酸盐岩储层过程中溢流、井漏、缩径、井塌、卡钻等井下故障和复杂情况频繁发生,导致机械钻速低,钻井周期长达81.17 d,其中处理井下溢流耗时4.71 d,如何实现奥陶系盐下高含硫碳酸盐岩储层安全高效钻进成为当前亟需解决的难题。为此,开展了“储层专打”井身结构设计、优良高抗硫井控装备及工具的标准配套、“高效PDC钻头+大扭矩单弯螺杆+MWD+随钻震击器”储层段复合钻井防斜防卡打快技术、精细控压钻井技术及饱和盐水钻井液等技术攻关及集成配套,形成了鄂尔多斯盆地东部气田盐下高含硫储层安全高效钻井技术,并在该气田的5口井进行了应用,提速效果显著,平均钻井周期大幅缩短,为奥陶系盐下深层碳酸盐岩裂缝性油气资源的高效勘探开发提供了技术支撑。
1. 储层岩性特点及钻井技术难点
鄂尔多斯盆地东部气田主要储层为下古生界奥陶系马家沟组碳酸盐岩地层,自上而下分为马六段、马五1–5亚段、马五6–10亚段、马四1亚段、马四2亚段、马四3亚段、马三段、马二段、马一段和寒武系三山组,其中马五1+2亚段为风化壳储层,马五4亚段、马五5亚段、马五6亚段、马五7亚段、马四段和马三段为白云岩储层,岩性致密,具有高压低渗特点,属高含硫气藏,埋深2 500~3 300 m,其中马六段、马四段和马二段为局限台地沉积,发育厚层碳酸盐岩;马五段、马三段和马一段为蒸发台地沉积,膏岩、盐岩与薄层白云岩、泥质碳酸盐岩互层发育,厚度大,分布面积广;马五5亚段、马四段为含H2S高压气层;三山组、张夏组为深灰色泥质云岩、云质灰岩。该气田奥陶系盐下高含硫碳酸盐岩储层钻井作业主要存在以下技术难点:
1)奥陶系马家沟组储层存在古风化壳碎屑岩层、大段膏盐层和泥质碳酸盐岩互层,其中马一段、马三段和马五6 亚段等含厚度80~140 m的盐岩段,钻井期间缩径、井塌、卡钻、井漏等井下故障和复杂情况频繁发生,且处理难度大,处理周期长。
2)奥陶系马五5亚段、马四段储层为晶间孔、微裂缝发育,埋藏深度2 800~3 000 m,地层压力系数达到1.58~1.64,地层压力达到40.05~42.39 MPa,钻井过程中易出现气侵、溢流等井下复杂情况,井控风险高。
3)奥陶系马家沟组碳酸盐岩储层属于被视为“禁区”的高含硫气藏[6-12],H2S 含量达到32 633.60~50 130.50 mg/m3,腐蚀性强,对井控设备、钻具等装备的材质、机械性能等的要求更高,且易对人员造成人身伤害,安全钻井难度大。
4)上部奥陶系马四段储层存在异常高压气层,下部寒武系、长城系地层压力低,钻进地层交界面时易发生井漏,导致溢漏同存,钻井井控风险高,处置难度大。
5)马家沟组碳酸盐岩储层灰质含量高,岩性致密,可钻性级值 6.5~7.5,钻进过程中PDC钻头易磨损,单只钻头进尺少,机械钻速低于4.0 m/h,无法满足安全快速钻进的需求。
6)钻遇大段膏盐层及含H2S、CO、CO2 等酸性气体高压储层,极易造成高密度钻井液发生钙侵、盐侵和泥侵,导致钻井液被污染,造成钻井液性能无法满足安全钻井的需要,钻井液维护处理难度大[13-15]。
2. 安全高效钻井技术
为满足鄂尔多斯盆地东部气田盐下高含硫碳酸盐岩储层安全高效钻井需求,从井身结构设计、高抗硫井控装备与工具标准配套、储层复合钻井防斜防卡打快技术、精细控压钻井技术、高密度饱和盐水钻井液等方面进行了技术攻关,形成了该盆地东部气田盐下高含硫储层安全钻井技术。
2.1 井身结构设计
对地层三压剖面预测结果(见表1)及MT1井完井资料进行综合分析,结合该区域地层特性及钻井技术难点,进行井身结构设计。由表1及MT1井的实钻情况可知:
表 1 鄂尔多斯盆地东部气田地层三压力剖面预测结果Table 1. Prediction results of formation three-pressure profiles in the eastern gas fields of Ordos Basin地层 井深/m 地层孔隙压力梯度/
(MPa·(100 m−1))地层破裂压力梯度/
(MPa·(100 m−1))地层坍塌压力梯度/
(MPa·(100 m−1))三叠系 延长组—和尚沟组 1340 0.50~0.75 2.10~2.20 0.60~0.75 刘家沟组 1620 0.50~0.75 1.35~1.45 0.50~0.75 二叠系 石千峰组 1905 0.50~1.00 1.75~2.15 0.65~0.90 石盒子组 2220 0.50~1.25 1.60~2.05 0.75~0.80 山西组 2340 0.50~0.85 1.60~2.05 0.65~0.75 太原组 2385 0.50~0.90 1.60~2.15 0.75~0.80 石炭系 本溪组 2445 0.50~1.35 1.60~2.05 0.75~0.90 奥陶系 马五1-5亚段 2540 0.75~1.50 1.50~1.75 0.85~0.90 马五6-10亚段 2735 0.75~1.35 1.50~2.00 0.85~0.90 马四1亚段 2780 0.90~1.25 1.50~1.60 0.85~1.05 马四2亚段 2835 0.90~1.25 1.50~1.60 0.85~1.05 马四3亚段 2885 0.90~1.25 1.40~1.90 0.75~0.85 马三段 3085 0.50~1.35 1.55~1.85 0.75~0.85 马二段 3175 0.50~0.90 1.30~1.75 0.75~0.85 马一段 3240 0.50~1.35 1.50~1.75 0.75~0.85 寒武系 张夏组 3290 0.50~1.30 1.60~1.85 0.75~0.85 1)根据地层孔隙压力梯度,将地层分为2套压力系统,第1套为第四系至石炭系本溪组,地层孔隙压力梯度0.50~1.00 MPa/100 m,仅石盒子组、本溪组等个别地层的孔隙压力梯度达1.25 MPa/100 m;第2套为奥陶系马家沟组,地层孔隙压力梯度相差较大,达到0.75~1.60 MPa/100 m,较第1套地层压力梯度高0.25~0.60 MPa/100 m。
2)从破裂压力梯度来看,第四系至石炭系本溪组地层破裂压力梯度为1.60~2.20 MPa/100m,地层承压能力较高,但刘家沟组地层破裂压力梯度为1.35~1.45 MPa/100m,地层承压能力较低,易发生破裂而引起井漏;奥陶系马家沟组地层破裂压力梯度为1.30~1.90 MPa/100m,较第四系至石炭系本溪组地层破裂压力梯度低。
3)分析地层坍塌压力发现,马四1–2亚段存在盐膏层,坍塌压力梯度1.08 MPa/100 m,采用低密度钻井液钻进时井壁易失稳垮塌,其余地层的坍塌压力梯度较低,地层稳定性相对较好。
4)塌漏矛盾突出,储层井控风险高。该气田已钻井MT1井实钻情况显示,刘家沟组地层承压能力低,钻井液密度大于1.20 kg/L时,易发生失返性漏失;二叠系石千峰组、石盒子组、山西组及石炭系本溪组泥岩、煤层等地层,钻井液密度低于1.20 kg/L时易失稳垮塌;奥陶系马家沟组碳酸盐岩储层存在异常高压、大段膏岩层,井控及井下安全风险高。
根据该气田地层三压力剖面,考虑邻井钻井过程中出现的井下故障及复杂情况,认为可以将三叠系延长组至石炭系本溪组设计在同一开次钻进,对于承压能力低的刘家沟组可采取承压堵漏措施,提高地层承压能力;由于奥陶系马家沟组存在异常高压、大段膏岩层,溢流、井涌和井塌的风险高,只能提高钻井液密度实现安全钻进,需下入一层套管封隔马家沟组顶部及以上地层。由此可知,2个必封点分别为地表第四系欠压实地层和三叠系延长组至奥陶系马家沟组顶部。因此,设计采用“储层专打”的三开井身结构:一开,采用ϕ444.5 mm 钻头钻至井深500 m,ϕ339.7 mm表层套管下至井深 500 m,封固第四系欠压实地层;二开,采用 ϕ311.1 mm 钻头钻至井深 2 795 m,钻穿石炭系本溪组,进入奥陶系马家沟组30 m,ϕ244.5 mm套管下至井深 2790 m,封固三叠系刘家沟组、二叠系和石炭系;三开,采用 ϕ215.9 mm 钻头钻进马家沟组盐下高含硫碳酸盐岩储层段,进入寒武系张夏组50 m完钻,下入 ϕ177.8 mm 套管固井(见图1)。
2.2 高抗硫井控装备与工具的标准配套
东部气田奥陶系马家沟组盐下碳酸盐岩储层产出气中硫化氢含量高,马五段、马四段地层压力系数高达1.64,钻井过程中井控风险高。为此,开展了高标准井控装备的集成配套,形成了适合该气田盐下高含硫井井控装备与工具的标准配套,确保了高含硫井井控安全。
1)高抗硫防喷器组。选用高抗硫EE级材质的防喷器组合,自上而下分别为35 MPa旋转防喷器(FX35-17.5/35 MPa)+70 MPa环形防喷器(FH35-70)+70 MPa剪切闸板防喷器(FZJ35-70)+70 MPa双闸板防喷器(2FZ35-70)+70 MPa四通(FS35-70)+105 MPa芯轴式标准双级套管头,防喷器组中所有与井内流体等介质接触的区域均采用镍基合金堆焊,以提高其防腐能力。
2)节流压井管汇组。选用EE-1.5级高抗硫材质、压力等级70 MPa的节流管汇(2YJG-70)和压井管汇(YG-70),节流阀的内腔、阀座、阀盖和垫环槽,各阀门、管件的垫环槽部位中与流体接触处均采用镍基合金堆焊,应用SS316不锈钢钢圈;采用专用硬质抗硫材质、与标准法兰连接的防喷管线,主通径≥103.0 mm,节流管汇、压井管汇与四通平直连接,防喷管线平直接至距井场100 m的放喷池,主防喷管线采用电子自动点火装置;液气分离器罐内径1 200 mm,容积6 m3,最大处理量8 000 m3/d,额定工作压力1.6 MPa,进液管线内径103.0 mm,排液管线内径应大于进液管线内径,排气管线内径不小于203.3 mm。
3)辅助防喷工具。配备高抗硫钻具内防喷工具、防硫钻具等专属防硫装备及工具,包括钻具止回阀、顶驱上下旋塞阀、钻杆回压阀抢装工具、防喷钻杆;配备与钻杆尺寸相符的液压“死卡”及绳索各1套、钻台“一键关井”应急操作台、SS105级防硫钻具。
4)安全应急装备。除了正压式呼吸器、空呼充气机、便携式检测仪等常规防护设施外,增配了鼻夹式逃生呼吸器,H2S、CO、CH4、O2“四合一”便携式气体检测仪,CO2及SO2复合式气体检测仪,最大量程为1500 mg/m3(1 000 ppm)的H2S检测仪,12通道固定式气体检测仪,并在井场四角安装硫化氢监测仪等有毒有害气体监测防护设施;增设2个容量24 m3的立式重晶石罐,6个容量50 m3的加重浆储备罐,共储备密度1.80 kg/L的加重浆300 m3,全力保障高含硫盐下井井控安全。
2.3 储层段复合钻井防斜防卡打快技术
为提高碳酸盐岩储层机械钻速,并实现井眼轨迹的高效控制,通过优选高效PDC钻头及大扭矩单弯螺杆、应用MWD无线随钻测斜仪和优化钻具组合,形成了“高效PDC钻头+大扭矩单弯螺杆+MWD+随钻震击器”的储层段复合钻井防斜防卡打快技术。
1)高效PDC钻头优选。奥陶系马家沟组储层的岩溶角砾岩、云质泥岩、泥质膏质云岩、深灰色灰岩、膏盐岩及硬石膏互层发育,非均质性强,灰质含量高,抗研磨性强;寒武系巨厚深灰色泥质云岩、云质灰岩具有岩石强度高,硬度大等地质特性,优选了冠部形状为单圆弧抛物线的五刀翼(2主+3辅)PDC 钻头,匹配进口异形切削齿(如图2所示),将传统的“剪切”破岩方式变为“剪切+挤压”复合破岩方式,减少剪切不均质地层时因蹩钻而造成的钻头崩齿损坏;采用双排加密、高攻击角度布齿设计,优化前后排切削齿出刃高度差,前排布置25 颗ϕ16 mm的主切削齿,肩部增加3颗异形齿,以增强钻头抗冲击性及研磨性,提高钻头的破岩效率。
2)大扭矩单弯螺杆优选。针对PDC钻头在“高转速+高钻压”条件下切削齿接触研磨性强的碳酸盐岩地层瞬间产生过大冲击载荷,易造成切削齿崩齿损坏的问题,可选择“低转速+大扭矩+高钻压”的钻井参数,并优选低转速大扭矩螺杆,通过降低螺杆转速、增大螺杆扭矩、逐步提高钻压的方式,提高PDC钻头钻进硬地层的切削效率,并达到有效保护PDC钻头的目的[16-17]。为此,优选了5级7∶8头低转速大扭矩螺杆(7LZ172×7.0-5型),其转速84~168 r/min,最大允许排量38 L/s,最大扭矩能够达到12 165 N·m,最大功率180 kW,可满足低转速、大扭矩、高钻压条件下高效破岩的要求。
3)预弯曲动力学防斜纠斜防卡钻具组合优化。为实现碳酸盐岩储层井眼轨迹的高效控制,达到防卡、提速的目的,选用由单弯螺杆、MWD无线随钻测斜仪和随钻震击器组成的预弯曲动力学防斜纠斜防卡钻具组合,实现井眼轨迹的实时监测和导向控制[18-20]。钻具组合为ϕ215.9 mm PDC钻头+7LZ172×1.25°弯螺杆(ϕ210.0 mm稳定器)+ϕ212.0 mm稳定器+461×460回压阀+ϕ165.1 mm钻铤×9根+461×410转换接头+ϕ165.1 mm随钻震击器+ϕ127.0 mm加重钻杆×15 根+ϕ127.0 mm钻杆。主要钻井参数:钻压60~100 kN,转速 50~60 r/min,排量 32~34 L/s,泵压15~19 MPa。
2.4 精细控压钻井技术
该气田奥陶系马家沟组盐下碳酸盐岩储层钻进过程中易发生气侵、井涌和井漏,溢漏转换密度窗口窄,井控风险高,处置难度大等问题,首次探索性应用了精细控压钻井技术。该技术通过控制井口回压,实现井筒压力微过平衡[21-22],钻进时控制井口回压不超过3.0 MPa,接单根、带压起钻时,控制井口回压不超过5.0 MPa。若井口回压<5.0 MPa,采用节流管汇循环排气、点火;若井口回压≥5.0 MPa且有明显持续升高趋势,立即关闭防喷器,转换为节流管汇循环排气、点火或者提高钻井液密度。控压钻进过程中,当井口回压逐渐升至5.0 MPa时,按照循环周以0.01 kg/L的幅度逐步提高钻井液密度,以降低井口回压,保证井口安全;若发生溢流,立即关井,求取关井立压,据此控制井口套压不超过5.0 MPa,采用精细控压自动节流控制系统节流循环除气点火,调整钻井液密度循环压井,当井口套压接近5.0 MPa时,转换节流管汇循环压井;采用“控压起钻+重浆帽”的起钻方式,裸眼井段起钻时控制井口压力不超3.0 MPa,钻头进入技术套管后,泵入重浆帽,保持储层上部钻井液液柱压力比地层孔隙压力高3.0 MPa,封住储层裸眼井段,再正常起钻。起钻过程需连续灌浆,下钻过程采用原井浆循环替出井内重浆,并逐步实时调整控压值。现场实践表明,精细控压钻井技术可有效减少因地层压力敏感引起的气侵、井涌、井漏等井下复杂情况,实现高含硫盐下储层的安全钻进。
2.5 高密度饱和盐水钻井液技术
奥陶系马家沟组盐下高含硫碳酸盐岩储层存在大段膏盐层,为防止膏岩、盐岩水化溶解分散造成井壁失稳垮塌,压稳高压气层,确保井下及井控安全,应用了具有极强“抗盐、抗钙、抗泥”污染能力的高密度饱和盐水钻井液,其基浆配方为:清水+0.20%~0.30%烧碱+2.00%~3.00%抗盐土+0.50%BLA-MV + 0.05%K-PAM+5.00%树脂+4.00%沥青+3.00%封堵剂+0.10%~0.20%黄原胶+25.00%NaCl+8.00%~10.00%KCl+重晶石+1.00%~2.00%除硫剂。为防止钻遇高压气层时出现气侵,依据地层孔隙压力系数,三开钻进前,将钻井液密度调整为1.35 kg/L,钻开储层后利用精细控压钻井技术逐步提高钻井液密度,以平衡地层压力,确保井控安全;钻井液中加入8.00%~10.00%KCl+25.00% NaCl,控制钻井液中Cl−质量浓度为170~190 g/L,以降低滤液水活度,防止盐岩水化溶解。同时保持钻井液中K+质量浓度较高,以增强钻井液抑制性,抑制泥页岩与钻屑的水化分散,确保盐膏层、泥岩夹层井段井壁的稳定[23-25]。钻井液主要性能:密度1.35~1.80 kg/L,漏斗黏度50~70 s,动切力8~15 Pa,塑性黏度小于55 mPa∙s,初切力1~4 Pa,终切力3~6 Pa,API滤失量≤5.0 mL。
钻井液主要维护处理措施为:
1)钻井液中加入1.0%~2.0%除硫剂,保持其pH值≥10;钻进高压地层和高气测井段时,将除硫剂加量提高至2.0%,使钻井液pH值达到11,提高钻井液抗酸性气体污染的能力。
2)钻进含膏地层时,将钻井液中的纯碱加量提高至0.3%~0.5%,控制钻井液矿化度≤400 mg/L,严防钻井液钙侵污染。
3)三开钻进中加入4.0%~6.0%的GT-MF、单封类随钻堵漏剂,逐步提高地层承压能力。
4)采用清水配置胶液,通过胶液罐均匀混入钻井液,胶液补充速率小于2.5m3/h,以保持钻井液流变性和脱气性能的稳定。
5)钻进过程中,保持钻井液中树脂类处理剂加量大于5.0%、沥青类处理剂加量大于4.0%、超细碳酸钙加量大于3.0%,以控制滤失量,形成优质滤饼,提高护壁能力。
3. 现场应用效果
2022年,鄂尔多斯东部气田盐下高含硫储层安全高效钻井技术在佳县、榆阳区块5口井进行了现场应用,钻机月速度1456 m/台月,平均钻井周期54.3 d,平均机械钻速8.35 m/h,与同区域未应用该技术的邻井MT1井相比(见表2),钻井周期缩短了33.1%,钻机月速度提高了35.28%,机械钻速提高了67.67%,提速效果显著,且三开钻进碳酸盐岩储层段过程中未发生井塌、井漏、卡钻等井下故障或复杂情况,首次实现了长庆油田高含硫气藏安全高效钻井,为奥陶系盐下深层碳酸盐岩裂缝性油气资源的高效勘探开发提供了技术支撑。
表 2 2022年完成的5口井与前期同区域邻井MT1井的主要钻井指标对比Table 2. Comparison of key indicators of five wells completed in 2022 with early adjacent well MT1 in the same area年份 完井
数量/口平均
井深/m储层井段
平均长度/m储层井段三开
钻井周期/d储层井段机械
钻速/(m·h−1)平均井径
扩大率,%钻井
周期/d钻机月速/
(m·台−1·月−1)机械钻速/
(m·h−1)2022 5 3230 590 11.67 6.85 6.16 54.30 1456.00 8.35 2021 1 3190 805 24.33 4.03 11.70 81.17 1076.32 4.98 由表2及实钻结果可以看出:
1)5口井三开储层井段平均钻井周期11.67 d,较MT1井缩短了52.03%;平均机械钻速6.85 m/h,较MT1井提高了69.97%;平均井径扩大率6.16%,直井最大井斜角2.8°,井底位移5.80 m,井身质量达标,机械钻速显著提高。
2)精细控压钻井技术能够有效发现气侵和井漏,且处置高效,有效降低了复杂时效,实现井控安全。其中,YY1井第一时间发现气侵3次与井漏1次,最高控压3.5 MPa,控压钻井期间,成功点火30次;M172井第一时间发现气侵1次,最高控压3.2 MPa,控压钻井期间,成功点火15次,实现了钻进、起下钻、后效处置作业全程精细控压,确保了钻井作业安全。
3)5口井钻进过程中,高密度饱和盐水钻井液的性能均能保持稳定,且抑制防塌性能、流变性和脱气性良好,携岩效果好,未发生井壁失稳垮塌等井下复杂情况。其中,MT6井三开2 529~2 950 m井段钻遇膏岩层占比19.0%,盐岩占比9.7%,钻井周期2.58 d,机械钻速高达8.42 m/h,平均井径扩大率3.37%,电测、起下钻、下套管和固井施工作业均顺利完成。该井三开井段钻井液主要性能见表3。
表 3 MT6井三开井段钻井液主要性能Table 3. Main performance of drilling fluid in the third section of Well MT6井深/m 密度/(kg·L−1) 漏斗黏度/s 滤失量/mL 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa c(Cl−)/(mg·L−1) pH值 2550 1.40 51 4.8 40 9.0 1.5/3.0 177 500 10.0 2650 1.54 53 4.2 42 10.5 2.0/3.0 184 600 10.5 2750 1.60 65 4.0 45 12.0 3.0/5.0 191 700 10.0 2850 1.73 67 3.8 47 14.0 3.0/5.0 188 100 10.5 2950 1.80 72 4.0 54 16.0 4.0/6.0 195 200 11.0 4. 结论与建议
1)针对鄂尔多斯盆地东部气田盐下高含硫储层钻井中存在的机械钻速低、溢流、井漏、缩径、井塌、卡钻等井下故障和复杂情况频繁发生的技术难点,通过技术攻关与技术集成,形成了以井身结构设计、高抗硫井控装备与工具的标准配套、精细控压钻井技术、高密度饱和盐水钻井液等关键技术为核心的盐下高含硫储层安全高效钻井技术,并在该气田5口井进行了成功应用,机械钻速大幅提高,且有效保证了井下安全。
2)精细控压钻井技术能实现井筒压力平衡重建,解决了储层安全密度窗口窄、溢流、井漏等井下复杂情况,实现了盐下高含硫储层的安全钻进。
3)现场应用效果表明,高密度饱和盐水钻井液具有良好的“抗盐、抗钙、抗泥”污染性能和良好的润滑防卡性能,解决了碳酸盐岩储层钻井过程中的井塌、溢流和卡钻等技术难点,满足了膏盐岩地层安全钻井的需要。
4)为进一步提高盐下高含硫储层钻井速度,建议开展“高效PDC钻头+恒扭矩工具+大扭矩单弯螺杆+MWD+随钻震击器”钻具组合的优化,以提高单只钻头进尺,实现碳酸盐岩储层一趟钻完钻。
-
表 1 MRMF与国际井场流量计量仪技术对标情况
Table 1 Comparison of MRMF and international wellsite flow meters
生产商 仪器型号 技术核心 适用范围 Agar MPFM 微波+科氏力/文丘里,双传感器串联 含气工况下精度大幅降低 Texco SMS 伽马能谱/微波+涡轮,双传感器串联 含气工况下精度大幅降低,不适用高黏度油和放射性限制场景 Aker Solution ASA DUET 双伽马能谱+压差,双传感器串联 含气工况下精度大幅降低,不适用
放射性限制场景Jiskoot Quality Systems Mixmeter 双伽马能谱+压差,双传感器串联 含气工况下精度大幅降低,不适用
放射性限制场景Multi Phase Meters AS MPM 单能伽马/高频电磁波+压差,
双传感器串联含气工况下精度大幅降低,不适用
放射性限制场景Neftemer Ltd 多能伽马+压差,双传感器串联 含气工况下精度大幅降低,不适用
放射性限制场景Pietro Fiorentini S.p.A. Flowatch 3I 电阻率+压差,双传感器串联 电阻率不适合高含水工况,含气工况下精度大幅降低,不适用放射性限制场景 Flowatch HS 单伽马能谱/电阻率+压差,双传感器串联 Roxar Flow Measurement MPFM 2600
MPFM 2600 Gamma电阻率+压差,双传感器串联 电阻率不适合高含水工况,含气工况下精度大幅降低,不适用放射性限制场景 Gamma Subsea MPFM 单伽马能谱/电阻率+压差,双传感器串联 MPFM 1900VI 单伽马能谱/电阻率+压差,双传感器串联 Schlumberger Ltd MPFM 1900VI Non-gamma 单伽马能谱/电阻率+压差,双传感器串联 电阻率不适合高含水工况,含气工况下精度大幅降低,不适用放射性限制场景 Phasewatcher 双伽马能谱+压差,双传感器串联 Phasetester 双伽马能谱+压差,双传感器串联 TEA Sistemi S.p.A LYRA 单伽马能谱/电阻率+压差,双传感器串联 电阻率不适合高含水工况,含气工况下精度大幅降低,不适用放射性限制场景 中国石油 MRMF 磁共振技术 全场景适用 -
[1] BLOCH F. Nuclear induction[J]. Physical Review, 1946, 70(7/8): 460–474.
[2] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 1946, 69(1/2): 37–38.
[3] PACKARD M, VARIAN R. Free nuclear induction in the earth’s magnetic field[J]. Physical Review, 1954, 93: 941.
[4] BROWN R J S, FATT I. Measurements of fractional wettability of oil fields’ rocks by the nuclear magnetic relaxation method[R]. SPE 743, 1956.
[5] BROWN R J S, GAMSON B W. Nuclear magnetism logging[J]. Journal of Petroleum Technology, 1960, 219(1): 201–209.
[6] SEEVERS D P. A nuclear magnetic method for determining the permeability of sandstones[R]. SPWLA-1966-L, 1966.
[7] ERNST R R, ANDERSON W A. Application of Fourier transform spectroscopy to magnetic resonance[J]. Review of Scientific Instruments, 1966, 37(1): 93–102. doi: 10.1063/1.1719961
[8] TIMUR A. An investigation of permeability, porosity, and residual water saturation relationships[R]. SPWLA-1968-J, 1968.
[9] LAUTERBUR P C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance[J]. Nature, 1973, 242(5394): 190–191. doi: 10.1038/242190a0
[10] AUE W P, BARTHOLDI E, ERNST R R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance[J]. The Journal of Chemical Physics, 1976, 64(5): 2229–2246. doi: 10.1063/1.432450
[11] WÜTHRICH K. NMR in biological research: peptides and proteins[M]. Amsterdam: North-Holland Publishing Company, 1976: 355.
[12] BROWNSTEIN K R, TARR C E. Importance of classical diffusion in NMR studies of water in biological cells[J]. Physics Review A, 1979, 19(6): 2446–2453. doi: 10.1103/PhysRevA.19.2446
[13] JACKSON J A, BURNETT L J, HARMON J F. Remote (inside-out) NMR. III. detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field[J]. Journal of Magnetic Resonance (1969), 1980, 41(3): 411–421.
[14] TAICHER Z, SHTRIKMAN S, PALTIEL Z, et al. Nuclear magnetic resonance sensing apparatus and techniques: US4717877[P]. 1988-01-05.
[15] KLEINBERG R L, SEZGINER A, GRIFFIN D D, et al. Novel NMR apparatus for investigating an external sample[J]. Journal of Magnetic Resonance (1969), 1992, 97(3): 466–485.
[16] CHANDLER R N, DRACK E O, MILLER M N, et al. Improved log quality with a dual-frequency pulsed NMR tool[R]. SPE 28365, 1994.
[17] PRAMMER M G, DRACK E D, BOUTON J C, et al. Measurements of clay-bound water and total porosity by magnetic resonance logging[R]. SPE 36522, 1996.
[18] PRAMMER M G, BOUTON J, CHANDLER R N, et al. A new multiband generation of NMR logging tools[R]. SPE 49011, 1998.
[19] COATES G R, XIAO Lizhi, PRAMMER M G. NMR logging: Principles and applications[M]. Houston: Gulf Publishing Company, 1999: 234.
[20] VENKATARAMANAN L, SONG Yiqiao, HURLIMANN M D. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[J]. IEEE Transactions on Signal Processing, 2002, 50(5): 1017–1026. doi: 10.1109/78.995059
[21] SONG Y Q, VENKATARAMANAN L, HÜRLIMANN M D, et al. T1-T2 correlation spectra obtained using a fast two-dimensional Laplace inversion[J]. Journal of Magnetic Resonance, 2002, 154(2): 261–268. doi: 10.1006/jmre.2001.2474
[22] BORGHI M, PORRERA F, LYNE A, et al. Magnetic resonance logging while drilling streamlines reservoir evaluation[R]. SPWLA-2005-HHH, 2005.
[23] HEIDLER R, MORRISS C, HOSHUN R. Design and implementation of a new magnetic resonance tool for the while drilling environment[R]. SPWLA-2003-BBB, 2003.
[24] DRACK E D, PRAMMER M G, ZANNONI S, et al. Advances in LWD nuclear magnetic resonance[R]. SPE 71730, 2001.
[25] PRAMMER M G, BOUTON J, MASAK P. The downhole NMR fluid analyzer[R]. SPWLA-2001-N, 2001.
[26] 阿克谢利罗德. 核磁测井[M]. 梅忠武, 译. 北京: 石油工业出版社, 1982: 134. АКСЕЛВРОД С М. Nuclear magnetic resonance logging[M]. MEI Zhongwu, translated. Beijing: Petroleum Industry Press, 1982: 134.
[27] 肖立志, 谢红. 核磁共振方法确定岩样孔隙度//首届全国岩石与矿物物理性质学术讨论会[C]. 上海, 1982. XIAO Lizhi, XIE Hong. Determining the porosity of rock by NMR method//National Symposium on Physical Properties of Rocks and Minerals[C]. Shanghai, 1982.
[28] 肖立志. 磁共振成象测井提供的基本信息及其应用[J]. 测井技术,1997,21(2):79–89. XIAO Lizhi. Basic information provided by MRIL and typical field examples[J]. Well Logging Technology, 1997, 21(2): 79–89.
[29] 肖立志,石红兵. 低场核磁共振岩心分析及其在测井解释中的应用[J]. 测井技术,1998,22(1):42–49. XIAO Lizhi, SHI Hongbing. Low field NMR core analysis and its applications in log analysis[J]. Well Logging Technology, 1998, 22(1): 42–49.
[30] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998: 328. XIAO Lizhi. Magnetic resonance imaging logging, rock magnetic resonance and its applications[M]. Beijing: Science Press, 1998: 328.
[31] DU Qunjie, XIAO Lizhi, ZHANG Yan, et al. A novel two-dimensional NMR relaxometry pulse sequence for petrophysical characterization of shale at low field[J]. Journal of Magnetic Resonance, 2020, 310: 106643. doi: 10.1016/j.jmr.2019.106643
[32] XIAO Lizhi, LI Kui. Characteristics of the nuclear magnetic resonance logging response in fracture oil and gas reservoirs[J]. New Journal of Physics, 2011, 13: 045003. doi: 10.1088/1367-2630/13/4/045003
[33] 郭江峰,徐陈昱,谢然红,等. 含微裂缝致密砂岩核磁共振响应机理研究[J]. 石油钻探技术,2022,50(4):121–128. GUO Jiangfeng, XU Chenyu, XIE Ranhong, et al. Study on the NMR response mechanism of micro-fractured tight sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121–128.
[34] 刘双惠,肖立志,胡法龙,等. 核磁共振测井地层界面响应特征研究[J]. 地球物理学报,2008,51(4):1262–1269. LIU Shuanghui, XIAO Lizhi, HU Falong, et al. Studies on NMR logging responses at formation boundary[J]. Chinese Journal of Geophysics, 2008, 51(4): 1262–1269.
[35] 李新, 肖立志. 天然气水合物的地球物理特征与测井评价[M]. 北京: 石油工业出版社, 2013: 136. LI Xin, XIAO Lizhi. Natural gas hydrates geophysical characteristics and well logging evaluation[M]. Beijing: Petroleum Industry Press, 2013: 136.
[36] 刘堂宴,马在田,傅容珊. 核磁共振谱的岩石孔喉结构分析[J]. 地球物理学进展,2003,18(4):737–742. LIU Tangyan, MA Zaitian, FU Rongshan. Analysis of rock pore structure with NMR spectra[J]. Progress in Geophysics, 2003, 18(4): 737–742.
[37] 王筱文,肖立志,谢然红,等. 中国陆相地层核磁共振孔隙度研究[J]. 中国科学G辑:物理学、力学、天文学,2006,36(4):366–374. WANG Xiaowen, XIAO Lizhi, XIE Ranhong, et al. NMR porosity study of continental formation in China[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2006, 36(4): 366–374.
[38] WANG Jie, XIAO Lizhi, LIAO Guangzhi, et al. Theoretical investigation of heterogeneous wettability in porous media using NMR[J]. Scientific Reports, 2018, 8(1): 13450. doi: 10.1038/s41598-018-31803-w
[39] WANG Jie, XIAO Lizhi, LIAO Guangzhi, et al. NMR characterizing mixed wettability under intermediate-wet condition[J]. Magnetic Resonance Imaging, 2019, 56: 156–160. doi: 10.1016/j.mri.2018.09.023
[40] LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Wettability characterization of low-permeability reservoirs using nuclear magnetic resonance: an experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 178: 121–132. doi: 10.1016/j.petrol.2019.03.014
[41] LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Two-dimensional nuclear magnetic resonance method for wettability determination of tight sand[J]. Magnetic Resonance Imaging, 2019, 56: 144–150. doi: 10.1016/j.mri.2018.09.020
[42] WANG Lin, XIAO Lizhi, YUE Wenzheng. NMR characterization of pore structure and connectivity for nano-self-assembly γ-Al2O3 and precursor[J]. Applied Magnetic Resonance, 2018, 49(10): 1099–1118. doi: 10.1007/s00723-018-1029-7
[43] WANG Lin, XIAO Lizhi, ZHANG Yan, et al. An improved NMR permeability model for macromolecules flowing in porous medium[J]. Applied Magnetic Resonance, 2019, 50(9): 1099–1123. doi: 10.1007/s00723-019-01140-w
[44] 何雨丹,毛志强,肖立志,等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报(地球科学版),2005,35(2):177–181. HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University(Earth Science Edition), 2005, 35(2): 177–181.
[45] 何雨丹,毛志强,肖立志,等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报,2005,48(2):373–378. HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. An improved method of using NMR T2 distribution to evaluate pore size distri-bution[J]. Chinese Journal of Geophysics, 2005, 48(2): 373–378.
[46] JIA Zijian, XIAO Lizhi, CHEN Zhong, et al. Determining shale organic porosity and total organic carbon by combining spin echo, solid echo and magic echo[J]. Microporous and Mesoporous Materials, 2018, 269: 12–16. doi: 10.1016/j.micromeso.2017.11.049
[47] 田志. 多尺度孔隙岩石的核磁共振扩散耦合现象及其探测方法[J]. 地球物理学报,2021,64(3):1119–1130. TIAN Zhi. NMR diffusional coupling of multiple-scale porous rock and its detection[J]. Chinese Journal of Geophysics, 2021, 64(3): 1119–1130.
[48] 田志,肖立志,廖广志,等. 基于沉积过程的数字岩石建模方法研究[J]. 地球物理学报,2019,62(1):248–259. TIAN Zhi, XIAO Lizhi, LIAO Guangzhi, et al. Study on digital rock reconstruction method based on sedimentological process[J]. Chi-nese Journal of Geophysics, 2019, 62(1): 248–259.
[49] 成家杰,肖立志,许巍,等. 基于岩石重构图像的核磁共振响应模拟[J]. 波谱学杂志,2013,30(3):336–344. CHENG Jiajie, XIAO Lizhi, XU Wei, et al. Simulating NMR responses in porous media based on reconstructed digital rock image[J]. Chinese Journal of Magnetic Resonance, 2013, 30(3): 336–344.
[50] 张宗富,肖立志,刘化冰,等. 水分子在微孔隙介质中的受限扩散模拟[J]. 波谱学杂志,2014,31(1):49–60. ZHANG Zongfu, XIAO Lizhi, LIU Huabing, et al. Simulation of restricted diffusion of water molecules in micropores[J]. Chinese Journal of Magnetic Resonance, 2014, 31(1): 49–60.
[51] AN Tianlin, XIAO Lizhi, LI Xin, et al. Investigation of the correlation between internal gradients and dephasing effect in inhomogeneous field[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(9): 1676–1683.
[52] XIAO Lizhi, WANG Zhongdong, LIU Tangyan. Application of multi-exponential inversion method to NMR measurements[J]. Petroleum Science, 2004, 1(1): 19–22.
[53] 王忠东,肖立志,刘堂宴. 核磁共振弛豫信号多指数反演新方法及其应用[J]. 中国科学G辑:物理学、力学、天文学,2003,33(4):323–332. WANG Zhongdong, XIAO Lizhi, LIU Tangyan. A new multi-exponential NMR inversion method and its application[J]. Science in China(Series G:Physics, Mechanics & Astronomy), 2003, 33(4): 323–332.
[54] 廖广志,肖立志,谢然红,等. 孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J]. 地球物理学报,2007,50(3):932–938. LIAO Guangzhi, XIAO Lizhi, XIE Ranhong, et al. Influence factors of multi-exponential inversion of NMR relaxation measurement in porous media[J]. Chinese Journal of Geophysics, 2007, 50(3): 932–938.
[55] 谢然红,肖立志,邓克俊,等. 二维核磁共振测井[J]. 测井技术,2005,29(5):430–434. XIE Ranhong, XIAO Lizhi, DENG Kejun, et al. Two-dimensional NMR logging[J]. Well Logging Technology, 2005, 29(5): 430–434.
[56] 谢然红,肖立志,陆大卫. 识别储层流体的(T2, T1)二维核磁共振方法[J]. 测井技术,2009,33(1):26–31. XIE Ranhong, XIAO Lizhi, LU Dawei. (T2, T1) Two-dimensional NMR method for fluid typing[J]. Well Logging Technology, 2009, 33(1): 26–31.
[57] 谢然红,肖立志. 核磁共振测井探测岩石内部磁场梯度的方法[J]. 地球物理学报,2009,52(5):1341–1347. XIE Ranhong, XIAO Lizhi. NMR logging probing the internal magnetic field gradients of rocks[J]. Chinese Journal of Geophysics, 2009, 52(5): 1341–1347.
[58] 谢然红,肖立志. (T2, D)二维核磁共振测井识别储层流体的方法[J]. 地球物理学报,2009,52(9):2410–2418. XIE Ranhong, XIAO Lizhi. The (T2, D) NMR logging method for fluids characterization[J]. Chinese Journal of Geophysics, 2009, 52(9): 2410–2418.
[59] ZHANG Zongfu, XIAO Lizhi, LIAO Guangzhi, et al. Evaluation of the fast inverse Laplace transform for three-dimensional NMR distribution functions[J]. Applied Magnetic Resonance, 2013, 44(11): 1335–1343. doi: 10.1007/s00723-013-0487-1
[60] ZHANG Z F, XIAO L Z, LIU H B, et al. A fast three-dimensional protocol for low-field Laplace NMR in porous media[J]. Applied Magnetic Resonance, 2013, 44(7): 849–857. doi: 10.1007/s00723-013-0451-0
[61] 黄科,肖立志,李新. 一种降低井下核磁共振振铃的新方法[J]. 波谱学杂志,2012,29(1):42–50. HUANG Ke, XIAO Lizhi, LI Xin. A novel method for NMR ringing reduction under downhole condition[J]. Chinese Journal of Magnetic Resonance, 2012, 29(1): 42–50.
[62] LUO Sihui, XIAO Lizhi, JIN Yan, et al. A machine learning framework for low-field NMR data processing[J]. Petroleum Science, 2022, 19(2): 581–593. doi: 10.1016/j.petsci.2022.02.001
[63] LUO Gang, XIAO Lizhi, LUO Sihui, et al. A study on multi-exponential inversion of nuclear magnetic resonance relaxation data using deep learning[J]. Journal of Magnetic Resonance, 2023, 346: 107358. doi: 10.1016/j.jmr.2022.107358
[64] LIAO Guangzhi, LUO Sihui, XIAO Lizhi. Borehole nuclear magnetic resonance study at the China University of Petroleum[J]. Journal of Magnetic Resonance, 2021, 324: 106914. doi: 10.1016/j.jmr.2021.106914
[65] WU Baosong, XIAO Lizhi, LI Xin, et al. Sensor design and implementation for a downhole NMR fluid analysis laboratory[J]. Petroleum Science, 2012, 9: 38–45. doi: 10.1007/s12182-012-0180-2
[66] 胡海涛. 电缆核磁共振测井仪探头关键技术研究[D]. 北京: 中国石油大学(北京), 2012. HU Haitao. Study of key technology in wireline NMR probe[D]. Beijing: China University of Petroleum(Beijing), 2012.
[67] 于慧俊. 核磁共振测井仪电子线路设计与实现[D]. 北京: 中国石油大学(北京), 2012. YU Huijun. Design and implementation of electronics in NMR logging[D]. Beijing: China University of Petroleum(Beijing), 2012.
[68] 傅少庆. 核磁共振测井数据处理软件设计与实现[D]. 北京: 中国石油大学(北京), 2012. FU Shaoqing. Design and implementation of data processing software in NMR logging[D]. Beijing: China University of Petroleum (Beijing), 2012.
[69] 谢庆民. 核磁共振测井降噪方法与应用研究[D]. 北京: 中国石油大学(北京), 2012. XIE Qingmin. Methods and applications of noise reduction in NMR logging[D]. Beijing: China University of Petroleum(Beijing), 2012.
[70] 吴保松. 井下核磁共振流体实验室关键技术研究[D]. 北京: 中国石油大学(北京), 2012. WU Baosong. Design and implementation of NMR sensor for downhole fluid laboratory[D]. Beijing: China University of Petroleum(Beijing), 2012.
[71] 李新. 随钻核磁共振测井仪探头关键技术研究[D]. 北京: 中国石油大学(北京), 2012. LI Xin. Study of key technology in LWD NMR probe[D]. Beijing: China University of Petroleum(Beijing), 2012.
[72] 王志战. 国内非常规油气录井技术进展及发展趋势[J]. 石油钻探技术,2017,45(6):1–7. WANG Zhizhan. Technical progress and developing trends in unconventional oil and gas mud logging in China[J]. Petroleum Drilling Techniques, 2017, 45(6): 1–7.
[73] 王志战,杜焕福,李香美,等. 陆相页岩油录井重点发展领域与技术体系构建[J]. 石油钻探技术,2021,49(4):155–162. WANG Zhizhan, DU Huanfu, LI Xiangmei, et al. Key development fields and construction of technical system for logging of continental shale oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155–162.
[74] 万亚旗,陈会年,杨明清,等. 录井装备技术现状及发展探讨[J]. 石油钻探技术,2018,46(2):115–119. WAN Yaqi, CHEN Huinian, YANG Mingqing, et al. Status quo and development exploration of mud logging equipment[J]. Petroleum Drilling Techniques, 2018, 46(2): 115–119.
[75] 李三国. 钻井液含油量核磁共振在线检测技术与系统研究[D]. 北京: 中国石油大学(北京), 2018. LI Sanguo. The study of drilling fluid NMR online analysis technology and system[D]. Beijing: China University of Petroleum (Beijing), 2018.
[76] 刘化冰. 孔隙介质低场核磁共振关键技术与应用[D]. 北京: 中国石油大学(北京), 2014. LIU Huabing. Key issues and application of low-field nuclear magnetic resonance in porous media[D]. Beijing: China University of Petroleum (Beijing), 2014.
[77] 邓峰. 低场在线核磁共振流体分析系统及其应用研究[D]. 北京: 中国石油大学(北京), 2014. DENG Feng. Low-field online nuclear magnetic resonance fluid analysis system and applications[D]. Beijing: China University of Petroleum (Beijing), 2014.
[78] 肖立志,于慧俊,刘化冰,等. 新型核磁共振孔隙介质分析仪的研制[J]. 中国石油大学学报(自然科学版),2013,37(3):68–73. XIAO Lizhi, YU Huijun, LIU Huabing, et al. A novel low field nuclear magnetic resonance analyzer for porous media[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(3): 68–73.
[79] 肖立志, 于慧俊, 刘化冰, 等. 核磁共振分析仪滑台和核磁共振分析仪: CN201210067251.2[P]. 2015-02-04. XIAO Lizhi, YU Huijun, LIU Huabing, et al. Nuclear magnetic resonance analyzer slide and nuclear magnetic resonance analyzer: CN201210067251.2[P]. 2015-02-04.
[80] 刘化冰, 汪正垛, 孙哲, 等. 一种能够形成变梯度静磁场的磁体系统结构: CN201720431548.0[P]. 2018-01-19. LIU Huabing, WANG Zhengduo, SUN Zhe, et al. A magnetic system structure capable of forming variable gradient static magnetic field: CN201720431548.0[P]. 2018-01-19.
[81] 李新,肖立志,刘化冰,等. 优化重聚脉冲提高梯度场核磁共振信号强度[J]. 物理学报,2013,62(14):147602. doi: 10.7498/aps.62.147602 LI Xin, XIAO Lizhi, LIU Huabing, et al. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field[J]. Acta Physica Sinica, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
[82] LIU Huabing, XIAO Lizhi, ZONG Fangrong, et al. Permeability profiling of rock cores using a novel spatially resolved NMR relaxometry method: Preliminary results from sandstone and limestone[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(5): 4601–4616. doi: 10.1029/2018JB016944
[83] 刘化冰, 宗芳荣, 汪正垛, 等. 一种快速核磁共振T1成像方法: CN201710869692.7[P]. 2018-02-23. LIU Huabing, ZONG Fangrong, WANG Zhengduo, et al. A fast MRI T1 imaging method: CN201710869692.7[P]. 2018-02-23.
[84] 邓峰, 赵瑞东, 师俊峰, 等. 一种确定多相流体组分流量的方法及装置: CN201710844809.6[P]. 2019-09-06. DENG Feng, ZHAO Ruidong, SHI Junfeng, et al. A method and device for determining component flow of multiphase fluid: CN201710844809.6[P]. 2019-09-06.
[85] 邓峰, 赵瑞东, 师俊峰, 等. 多相流磁共振流量计刻度装置及其含水率、流速刻度方法: CN201810479204.6[P]. 2020-01-07. DENG Feng, ZHAO Ruidong, SHI Junfeng, et al. Multiphase flow magnetic resonance flowmeter calibration device and its water content and flow rate calibration method: CN201810479204.6[P]. 2020-01-07.
[86] 邓峰, 陈诗雯, 陈冠宏, 等. 流体各组分流量测量装置及方法: CN201910986520.7[P]. 2022-11-04. DENG Feng, CHEN Shiwen, CHEN Guanhong, et al. Fluid component flow measuring device and method: CN201910986520.7[P]. 2022-11-04.
[87] DENG Feng, XIONG Chunming, CHEN Shiwen, et al. A method and device for online magnetic resonance multiphase flow detection[J]. Petroleum Exploration and Development, 2020, 47(4): 855–866. doi: 10.1016/S1876-3804(20)60101-X
[88] DENG Feng, CHEN Guanhong, WANG Mengying, et al. Magnetic resonance multi-phase flowmeter & fluid analyzer[R]. SPE 202208, 2020.
[89] DENG Feng, CHEN Shiwen, CHEN Guanhong, et al. Intelligent decision making and optimization of artificial lifting based on MR multi-phase flow detection[R]. OTC-31349-MS, 2022.
[90] DENG Feng, LIU Huabing, CHEN Shiwen, et al. Low-cost multi-phase flow metering and assays technology using online magnetic resonance[R]. SPE 211279, 2022.
[91] SHI Junfeng, DENG Feng, XIAO Lizhi, et al. A proposed NMR solution for multi-phase flow fluid detection[J]. Petroleum Science, 2019, 16(5): 1148–1158. doi: 10.1007/s12182-019-00367-3
-
期刊类型引用(1)
1. 胡勇,惠栋,杜强,蒋德生,李滔,刘其松,闫静,陈颖莉,李隆新,刘微. 四川盆地中坝气田雷三气藏高效开发及其对中国高含硫气藏开采的意义. 天然气工业. 2024(11): 24-36 . 百度学术
其他类型引用(0)