中国石化页岩气超长水平段水平井钻井技术新进展与发展建议

袁建强

袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023, 51(4):81-87. DOI: 10.11911/syztjs.2023030
引用本文: 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023, 51(4):81-87. DOI: 10.11911/syztjs.2023030
YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(4):81-87. DOI: 10.11911/syztjs.2023030
Citation: YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(4):81-87. DOI: 10.11911/syztjs.2023030

中国石化页岩气超长水平段水平井钻井技术新进展与发展建议

基金项目: 中国石化十条龙项目“复兴侏罗系陆相页岩油气水平井钻完井技术”(编号:P21078-6)资助
详细信息
    作者简介:

    袁建强(1963—),男,湖南长沙人,1985 年毕业于江汉石油学院钻井工程专业,1992 年获石油大学(北京)油气井工程专业硕士学位,2010 年获中国地质大学(武汉)矿产普查与勘探专业博士学位,正高级工程师,主要从事石油工程技术研究与管理工作。系本刊编委会副主任。E-mail:yuanjq.os@sinopec.com

  • 中图分类号: TE243

New Progress and Development Proposals of Sinopec’s Drilling Technologies for Ultra-Long Horizontal Shale Gas Wells

  • 摘要:

    为实现页岩气超长水平段水平井高效开发,中国石化围绕页岩气地质选区评价、装备配套、降摩减阻、低成本高效地质导向、钻井参数分层优化、长寿命高效破岩工具及高效固井等技术进行攻关研究,成功实施了水平段长度超过2 700 m的水平井15口、超过3 000 m的水平井5口,初步形成了4 000 m页岩气超长水平段水平井钻井技术,有力支撑了东胜区块、焦石坝区块等页岩气的高效开发。概述并分析了中国石化页岩气超长水平段水平井钻井技术的新进展,分析认为,与国外相比,中国石化页岩气超长水平段水平井钻井技术仍存在较大差距,因此建议重点攻关地质选区及评价、关键提速工具、高效钻井液体系、降摩减阻和套管下入与长效封固等关键工具与技术,为实现超长水平段水平井安全高效钻井提供技术支撑。

    Abstract:

    In order to achieve the efficient development of ultra-long horizontal shale gas wells, Sinopec made breakthroughs in technologies such as evaluation of geological area selection, supporting equipment, friction reduction, low-cost and efficient geo-steering, layered optimization of drilling parameters, long-life and efficient rock breaking tools, and efficient cementing, etc. As a result, 15 horizontal wells with a horizontal section of more than 2 700 m and 5 wells with a horizontal section exceeding 3 000 m have been drilled. The technical system for the drilling of horizontal shale gas wells with an ultra-long horizontal section of 4 000 m was formed preliminarily. The above have provided strong support for efficient shale gas development in the Dongsheng Block and the Jiaoshiba Block. However, there is still a big gap between Sinopec’s shale gas ultra-long horizontal well drilling technologies and those of foreign countries. Hence, it was suggested that breakthroughs should be mainly made in tools and technologies including the selection and evaluation of geological areas, key speed-up tools, efficient drilling fluid systems, friction reduction techniques, and casing running and long-term cementing technologies, etc. In this way, it would provide technical support for realizing safe and efficient ultra-long horizontal well drilling.

  • 图  1   双螺旋随钻井壁修整器

    Figure  1.   Double helix wall trimmer with drilling

    图  2   分层强化参数推荐图版

    Figure  2.   Stratified reinforcement parameter recommended chart

  • [1] 孙永兴,贾利春. 国内3 000 m长水平段水平井钻井实例与认识[J]. 石油钻采工艺,2020,42(4):393–401.

    SUN Yongxing, JIA Lichun. Cases and understandings on the drilling of horizontal well with horizontal section of 3 000 m long in China[J]. Oil Drilling & Production Technology, 2020, 42(4): 393–401.

    [2] 彭兴,周玉仓,龙志平,等. 南川地区页岩气水平井优快钻井技术进展及发展建议[J]. 石油钻探技术,2020,48(5):15–20.

    PENG Xing, ZHOU Yucang, LONG Zhiping, et al. Progress and development recommendations for optimized fast drilling technology in shale gas horizontal wells in the Nanchuan Area[J]. Petroleum Drilling Techniques, 2020, 48(5): 15–20.

    [3] 张家希,于家庆,GALCHENKO R,等. 北美非常规油气超长水平井优快钻井技术及实例分析[J]. 钻探工程,2021,48(8):1–11.

    ZHANG Jiaxi, YU Jiaqing, GALCHENKO R, et al. North America unconventional long lateral well fast-drilling technology with case study[J]. Drilling Engineering, 2021, 48(8): 1–11.

    [4] 光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1–6.

    GUANG Xinjun, YE Haichao, JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(1): 1–6.

    [5] 袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12.

    YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12.

    [6] 李东杰,王炎,魏玉皓,等. 页岩气钻井技术新进展[J]. 石油科技论坛,2017,36(1):49–56.

    LI Dongjie, WANG Yan, WEI Yuhao, et al. Latest shale gas drilling technological development[J]. Petroleum Science and Technology Forum, 2017, 36(1): 49–56.

    [7] 杨海平,游云武. 焦页2-5HF长水平井钻完井关键技术[J]. 钻采工艺,2018,41(3):5–8.

    YANG Haiping, YOU Yunwu. Critical drilling technology for drilling super-long horizontal Well JY 2-5HF[J]. Drilling & Production Technology, 2018, 41(3): 5–8.

    [8] 姜政华,孙钢,陈士奎,等. 南川页岩气田超长水平段水平井钻井关键技术[J]. 石油钻探技术,2022,50(5):20–26. doi: 10.11911/syztjs.2022045

    JIANG Zhenghua, SUN Gang, CHEN Shikui, et al. Key drilling technologies for horizontal wells with ultra-long horizontal sections in Nanchuan Shale Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(5): 20–26. doi: 10.11911/syztjs.2022045

    [9] 覃岚,董国昌,郭建勋,等. 基于分段摩阻因数的水平井延伸极限分析及应用[J]. 东北石油大学学报,2022,46(2):107–116.

    QIN Lan, DONG Guochang, GUO Jianxun, et al. Analysis and application of horizontal well extension limit based on sectional friction factor[J]. Journal of Northeast Petroleum University, 2022, 46(2): 107–116.

    [10] 胡德高,黄文君,石小磊,等. 页岩气水平钻井延伸极限预测与参数优化[J]. 科学技术与工程,2021,21(17):7053–7058.

    HU Degao, HUANG Wenjun, SHI Xiaolei, et al. Prediction of extension limit and parameter optimization of shale gas horizontal drilling[J]. Science Technology and Engineering, 2021, 21(17): 7053–7058.

    [11] 付强. 四川盆地页岩气超长水平段水平井钻井实践与认识[J]. 钻采工艺,2022,45(4):9–18.

    FU Qiang. Drilling practice and understanding of ultra-long horizontal section wells of shale gas in Sichuan Basin[J]. Drilling & Production Technology, 2022, 45(4): 9–18.

    [12] 周文涛,肖坤,董新,等. 页岩油超长水平井钻井关键技术分析[J]. 石化技术,2022,29(4):133–134. doi: 10.3969/j.issn.1006-0235.2022.04.061

    ZHOU Wentao, XIAO Kun, DONG Xin, et al. Analysis of key technologies of shale oil drilling in ultra-long horizontal wells[J]. Petrochemical Industry Technology, 2022, 29(4): 133–134. doi: 10.3969/j.issn.1006-0235.2022.04.061

    [13] 常晓峰,孙金声,王清臣. 水平井和斜井井眼清洁技术研究进展及展望[J]. 钻井液与完井液,2023,40(1):1–19.

    CHANG Xiaofeng, SUN Jinsheng, WANG Qingchen. Hole cleaning technology for horizontal and deviated drilling: progress made and prospect[J]. Drilling Fluid & Completion Fluid, 2023, 40(1): 1–19.

    [14] 张国荣,王俊方,张龙富,等. 南川常压页岩气田高效开发关键技术进展[J]. 油气藏评价与开发,2021,11(3):365–376.

    ZHANG Guorong, WANG Junfang, ZHANG Longfu, et al. Key technical progress in efficient development of Nanchuan normal-pressure shale gas field[J]. Reservoir Evaluation and Development, 2021, 11(3): 365–376.

    [15] 刘军波,韦红术,赵景芳,等. 考虑钻头转速影响的新三维钻速方程[J]. 石油钻探技术,2015,43(1):52–57.

    LIU Junbo, WEI Hongshu, ZHAO Jingfang, et al. A new 3D ROP equation considering the rotary speed of bit[J]. Petroleum Drilling Techniques, 2015, 43(1): 52–57.

    [16] 李谦,曹彦伟,朱海燕. 基于人工智能的钻速预测模型数据有效性下限分析[J]. 钻探工程,2021,48(3):21–30.

    LI Qian, CAO Yanwei, ZHU Haiyan. Discussion on the lower limit of data validity for ROP prediction based on artificial intelli-gence[J]. Drilling Engineering, 2021, 48(3): 21–30.

    [17] 刘忠,胡伟,尹卓,等. PDC钻头混合布齿参数对破岩的影响研究[J]. 石油机械,2020,48(3):51–57.

    LIU Zhong, HU Wei, YIN Zhuo, et al. The influence of mixed cutter arrangement parameters of PDC bit on rock breaking[J]. China Petroleum Machinery, 2020, 48(3): 51–57.

    [18] 邹德永,徐城凯,易杨,等. PDC钻头布齿参数与地层适应性的试验研究[J]. 天然气工业,2017,37(9):85–90.

    ZOU Deyong, XU Chengkai, YI Yang, et al. An experimental study on PDC bits’ cutter parameters and formation adaptability[J]. Natural Gas Industry, 2017, 37(9): 85–90.

    [19] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.

    [20] 刘克强. “一趟钻” 关键工具技术现状及发展展望[J]. 石油机械,2019,47(11):13–18.

    LIU Keqiang. Technology status and development prospect of the key tools of one-trip drilling[J]. China Petroleum Machinery, 2019, 47(11): 13–18.

    [21] 杨金华,郭晓霞. PDC钻头技术发展现状与展望[J]. 石油科技论坛,2018,37(1):33–38. doi: 10.3969/j.issn.1002-302x.2018.01.008

    YANG Jinhua, GUO Xiaoxia. The present status and outlook of PDC bit technology[J]. Petroleum Science and Technology Forum, 2018, 37(1): 33–38. doi: 10.3969/j.issn.1002-302x.2018.01.008

  • 期刊类型引用(14)

    1. 赵楠,李万渠,冯金钰,王奕儒,李丽. 多裂纹对裂纹搭接规律影响数值模拟及机理研究. 钻采工艺. 2022(02): 160-164 . 百度学术
    2. 张瑞萍,祝云,窦益华,杨晓儒,李明飞. 基于FLAC~(3D)的压裂工况下地应力重新分布规律研究. 石油机械. 2021(08): 91-99 . 百度学术
    3. 何其胜,王贵君. 砂砾岩水压致裂机理及数值仿真研究. 三峡大学学报(自然科学版). 2020(06): 45-49 . 百度学术
    4. 尉雪梅,吴飞鹏,刘恒超,徐尔斯,张艳玉,蒲春生. 燃爆压裂井井周诱导应力分布规律. 中国石油大学学报(自然科学版). 2018(01): 105-112 . 百度学术
    5. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
    6. 吴飞鹏,徐尔斯,尉雪梅,刘恒超,李德,丁乾申. 燃爆诱导水力压裂多裂缝耦合起裂规律. 天然气工业. 2018(11): 65-72 . 百度学术
    7. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 . 百度学术
    8. 彭瑀,李勇明,赵金洲. 考虑任意压力分布的裂缝诱导应力场计算模型及其应用. 中国石油大学学报(自然科学版). 2017(03): 92-97 . 百度学术
    9. 李玮,纪照生. 暂堵转向压裂机理有限元分析. 断块油气田. 2016(04): 514-517 . 百度学术
    10. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 . 百度学术
    11. 李玉梅,吕炜,宋杰,李军,杨宏伟,于丽维. 层理性页岩气储层复杂网络裂缝数值模拟研究. 石油钻探技术. 2016(04): 108-113 . 本站查看
    12. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
    13. 李士斌,官兵,张立刚,陈双庆,王业强. 水平井压裂裂缝局部应力场扰动规律. 油气地质与采收率. 2016(06): 112-119 . 百度学术
    14. 林飞,盛萍,李春颖. 煤层气藏水平井分段压裂裂缝参数优化. 中州煤炭. 2016(02): 126-128 . 百度学术

    其他类型引用(7)

图(2)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  298
  • PDF下载量:  227
  • 被引次数: 21
出版历程
  • 收稿日期:  2022-10-16
  • 修回日期:  2023-01-29
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回