Research on Suction Pile Well Construction Model for Deep Sea Resource Drilling
-
摘要:
在深水油气、天然气水合物钻探过程中,建立井口是保证钻井作业安全和时效的关键。吸力桩建井作为一种新型建井模式是目前世界海洋工程领域的研究热点,研究吸力桩建井模式对提高深海建井技术创新和提升建井效率具有重要作用。吸力桩建井模式主要依靠负压作用来安装吸力桩,对土壤扰动小,能大幅度提高井口承载力,入泥深度相比传统建井模式大大减小;吸力桩还能够扩展容纳多个井口,结合井筒预斜设计可以克服软地层造斜难题。介绍了吸力桩建井的工艺流程,给出了吸力桩和井筒的设计方法,并利用南海某深水井场的土质参数设计了适用于该井场的吸力桩和井筒。设计计算结果表明,吸力桩建井模式能够很好地适应于该南海深水井场。研究表明,吸力桩建井模式为深海资源勘探开发建井提供了新的技术途径。
Abstract:In the process of drilling for oil, gas and hydrate in deep water, the establishment of wellhead is the key to the safety and timeliness of the entire drilling operation. As a new well construction model, suction pile well construction has become a research hotspot in global ocean engineering, and thus, research on this model is of great significance for boosting innovations in well construction technologies and improving deep sea well construction efficiency. The model mainly depends on negative pressure to install suction piles, which causes small perturbations to the soil and could greatly enhance the bearing capacity of the wellhead. Further, its mud depth was considerably reduced compared with that of the traditional well construction model. In addition, the suction pile could be extended to accommodate multiple wellheads, and the problem of soft formation deviation could be overcome in combination with the wellbore predeflection design. In this paper, the process flow of suction pile well construction was introduced, and the design methods for suction piles and wellbores were given. Moreover, the parameters of soil quality in a deep-water well site in the South China Sea were utilized to design suction piles and wellbores suitable for the well site. The design results indicated that the suction pile well construction model could be effectively adapted to the well site. The research suggests that this model provides a new way to construct wells for deep sea resource exploration and development.
-
Keywords:
- deep sea /
- suction pile /
- well construction process /
- structure design /
- mud depth design
-
-
表 1 南海某深水井场土质参数
Table 1 Soil quality parameters of a deep water well site in the South China Sea
层号 土质描述 深度/m 水下容重/
(kN·m–3)抗剪强度/kPa 内摩擦角/(°) 承载力系数 下限 上限 Nq Nr 1 非常软的黏土 0 4.1 5.0 8.0 3 4.1 5.0 8.0 2 松散到中密实的砂质粉土 3 5.5 20 6.4 5.4 4 5.5 20 6.4 5.4 3 非常软到软的黏土 4 6.5 8.0 10.0 19 6.5 24.0 37.0 -
[1] 杨进. 深水油气井表层导管下入深度计算方法[J]. 石油学报,2019,40(11):1396–1406. YANG Jin. Calculation method of surface conductor setting depth in deepwater oil and gas wells[J]. Acta Petrolei Sinica, 2019, 40(11): 1396–1406.
[2] 李家仪,许亮斌,周建良, 等. 基于非概率可靠性的喷射导管下入深度设计方法[J]. 石油钻探技术,2015,43(4):8–12. doi: 10.11911/syztjs.201504002 LI Jiayi, XU Liangbin, ZHOU Jianliang, et al. Design for the setting depth of jetting conducors based on non-probalistic reliability[J]. Petroleum Drilling Tecniques, 2015, 43(4): 8–12. doi: 10.11911/syztjs.201504002
[3] 周波,杨进,周建良,等. 深水喷射扰动对表层导管承载力的影响规律[J]. 中国海上油气,2016,28(1):98–102. ZHOU Bo, YANG Jin, ZHOU Jianliang, et al. Pattern of influence of disturbance caused by jetting on bearing capacity of surface conductor in deep water zones[J]. China Offshore Oil and Gas, 2016, 28(1): 98–102.
[4] 杨进,曹式敬. 深水石油钻井技术现状及发展趋势[J]. 石油钻采工艺,2008,30(2):10–13. YANG Jin, CAO Shijing. Current situation and developing trend of petroleum drilling technologies in deep water[J]. Oil Drilling & Production Technology, 2008, 30(2): 10–13.
[5] 周建良,杨进,严德,等. 深水表层导管下入方式适应性分析[J]. 长江大学学报(自科版),2013,10(2):66–69. ZHOU Jianliang, YANG Jin, YAN De, et al. Research of installation technique for surface conductor in deepwater drilling[J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(2): 66–69.
[6] MATHIS W, STRAND H, HOLLINGER G. Case history: how to enable the horizontal development of shallow reservoirs[R]. SPE 184667, 2017.
[7] SIVERTSEN T, STRAND H. New well foundation concept, as used at a Norwegian Sea well[R]. SPE 149584, 2011.
[8] 徐继祖,史庆增,宋安,等. 吸力锚在国内近海工程中的首次应用与设计[J]. 中国海上油气(工程),1995,7(1):32–36. XU Jizu, SHI Qingzeng, SONG An, et al. The first application and design of suction anchor in domestic offshore engineering[J]. China Offshore Oil and Gas(Engineering), 1995, 7(1): 32–36.
[9] 张明贺, 杨进, 刘和兴, 等. 深水吸力桩建井技术[C]//第二十届中国海洋(岸)工程学术讨论会论文集(上). 南京: 河海大学出版社, 2022: 283−290. ZHANG Minghe, YANG Jin, LIU Hexing, et al. Deep suction pile built well technology[C]//proceedings of the 20th China Marine (Coastal) Engineering Symposium (I). Nanjing: Hohai University Press, 2022: 283 − 290.
[10] 顾纯巍,李中,黄熠,等. 吸力桩式水下基盘结构优化研究与应用[J]. 中国海上油气,2014,26(4):110–112. GU Chunwei, LI Zhong, HUANG Yi, et al. The structure optimization research and application of subsea suction pile template[J]. China Offshore Oil and Gas, 2014, 26(4): 110–112.
[11] KAN Changbin, YANG Jin, YU Xiaocong, et al. Load bearing characteristics study on novel deepwater composite drilling conductor by simulation and experimental methods[J]. Journal of Petroleum Science and Engineering, 2018, 171: 289–301. doi: 10.1016/j.petrol.2018.07.023
[12] 朱敬宇,陈国明,刘康, 等. 深水水合物钻井导管下深设计与地层安全承载研究[J]. 石油钻采工艺,2019,41(6):690–696. doi: 10.13639/j.odpt.2019.06.002 ZHU Jingyu, CHEN Guoming, LIU Kang, et al. The design on the setting depth of drilling conductor and the study on the safe bearing load of formation in deepwater hydrate exploitation[J]. Oil Drilling & Production Technology, 2019, 41(6): 690–696. doi: 10.13639/j.odpt.2019.06.002
[13] 刘清友,秦松,毛良杰,等. 深水钻井隔水导管承载能力影响因素分析[J]. 石油钻探技术,2019,47(5):49–56. doi: 10.11911/syztjs.2019099 LIU Qingyou, QIN Song, MAO Liangjie, et al. An analysis of the factors affecting the load-bearing capacity of deep water drilling conductor[J]. Petroleum Drilling Tecniques, 2019, 47(5): 49–56. doi: 10.11911/syztjs.2019099
[14] 李文轩,曹永勇. 海上筒型基础的筒壁土压力计算[J]. 水利水运工程学报,2018(3):65–70. LI Wenxuan, CAO Yongyong. Earth pressure calculation for bucket wall of offshore bucket foundation[J]. Hydro-Science and Engineering, 2018(3): 65–70.
[15] 刘梅梅,练继建,杨敏,等. 宽浅式筒型基础竖向承载力研究[J]. 岩土工程学报,2015,37(2):379–384. LIU Meimei, LIAN Jijian, YANG Min, et al. Vertical bearing capacity of wide-shallow bucket foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 379–384.
[16] 李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68.
[17] 严驰,李亚坡,袁中立. 土性参数对桶形基础竖向地基承载力影响的敏感性分析[J]. 水运工程,2009(1):155–160. YAN Chi, LI Yapo, YUAN Zhongli. Sensitivity analysis of the effect of soil parameters on the vertical bearing capacity of bucket foundation[J]. Port & Waterway Engineering, 2009(1): 155–160.
[18] 刘振纹,王建华,秦崇仁,等. 负压桶形基础地基水平承载力研究[J]. 岩土工程学报,2000,22(6):691–695. LIU Zhenwen, WANG Jianhua, QIN Chongren, et al. Research on the horizontal bearing capacity of bucket foundations[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 691–695.
[19] 管志川,苏堪华,苏义脑. 深水钻井导管和表层套管横向承载能力分析[J]. 石油学报,2009,30(2):285–290. GUAN Zhichuan, SU Kanhua, SU Yinao. Analysis on lateral load-bearing capacity of conductor and surface casing for deepwater drilling[J]. Acta Petrolei Sinica, 2009, 30(2): 285–290.
[20] 杨进,李文龙,胡志强,等. 深水钻井水下井口稳定性研究进展[J]. 中国海上油气,2020,32(4):124–130. YANG Jin, LI Wenlong, HU Zhiqiang, et al. Research progresses on subsea wellhead stability of deep water drilling[J]. China Offshore Oil and Gas, 2020, 32(4): 124–130.
[21] 蒋杏雨. 宽浅式筒型基础在粉质粘土中的承载力研究[D]. 天津: 天津大学, 2015. JIANG Xingyu. Analysis on bearing capacity of wide and shallow bucket foundation in silty clay[D]. Tianjin: Tianjin University, 2015.
-
期刊类型引用(14)
1. 赵楠,李万渠,冯金钰,王奕儒,李丽. 多裂纹对裂纹搭接规律影响数值模拟及机理研究. 钻采工艺. 2022(02): 160-164 . 百度学术
2. 张瑞萍,祝云,窦益华,杨晓儒,李明飞. 基于FLAC~(3D)的压裂工况下地应力重新分布规律研究. 石油机械. 2021(08): 91-99 . 百度学术
3. 何其胜,王贵君. 砂砾岩水压致裂机理及数值仿真研究. 三峡大学学报(自然科学版). 2020(06): 45-49 . 百度学术
4. 尉雪梅,吴飞鹏,刘恒超,徐尔斯,张艳玉,蒲春生. 燃爆压裂井井周诱导应力分布规律. 中国石油大学学报(自然科学版). 2018(01): 105-112 . 百度学术
5. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
6. 吴飞鹏,徐尔斯,尉雪梅,刘恒超,李德,丁乾申. 燃爆诱导水力压裂多裂缝耦合起裂规律. 天然气工业. 2018(11): 65-72 . 百度学术
7. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 . 百度学术
8. 彭瑀,李勇明,赵金洲. 考虑任意压力分布的裂缝诱导应力场计算模型及其应用. 中国石油大学学报(自然科学版). 2017(03): 92-97 . 百度学术
9. 李玮,纪照生. 暂堵转向压裂机理有限元分析. 断块油气田. 2016(04): 514-517 . 百度学术
10. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 . 百度学术
11. 李玉梅,吕炜,宋杰,李军,杨宏伟,于丽维. 层理性页岩气储层复杂网络裂缝数值模拟研究. 石油钻探技术. 2016(04): 108-113 . 本站查看
12. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
13. 李士斌,官兵,张立刚,陈双庆,王业强. 水平井压裂裂缝局部应力场扰动规律. 油气地质与采收率. 2016(06): 112-119 . 百度学术
14. 林飞,盛萍,李春颖. 煤层气藏水平井分段压裂裂缝参数优化. 中州煤炭. 2016(02): 126-128 . 百度学术
其他类型引用(7)